Skip to main content
Log in

Cardiotoxicity with Modern Local Anaesthetics

Is There a Safer Choice?

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The recognition that long-acting local anaesthetics, particularly bupivacaine the de facto standard long-acting local anaesthetic, were disproportionately more cardiotoxic than their shorter-acting counterparts stimulated the development of the bupivacaine congeners, ropivacaine and levobupivacaine. These agents, like all local anaesthetics, can produce cardiotoxic sequelae by direct and indirect mechanisms that derive from their mode of local anaesthetic actions, i.e. inhibition of voltage-gated ion channels. While all local anaesthetics can cause direct negative inotropic effects, ropivacaine and levobupivacaine are less cardiotoxic than bupivacaine judging by the larger doses tolerated in laboratory animal preparations before the onset of serious cardiotoxicity (particularly electro-mechanical dissociation or malignant ventricular arrhythmias). Additionally, they are less toxic to the CNS than bupivacaine judging by the larger doses tolerated before the onset of seizures. This may be clinically important because CNS effects may be involved in the production of serious cardiotoxicity. Preclinical studies in humans are a ‘blunt instrument’ in their ability to distinguish significant differences between these drugs because of the relatively small doses that can be used. Nevertheless, available evidence from human studies corroborates the preclinical laboratory animal studies. Because clinically significant differences between these drugs are more quantitative than qualitative, i.e. toleration of a larger dose before manifestation of toxicity, we have concluded that these newer agents have a lower risk of causing serious cardiotoxicity than bupivacaine. Thus, compared with bupivacaine, the newer agents may be seen as ‘safer’, but they must not be regarded as ‘safe’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I

Similar content being viewed by others

Notes

  1. In the text, the term S-bupivacaine has been used to emphasise enantiomeric differences, whereas levobupivacaine has been used to designate use of the enantiopure drug. Also in the text, doses are taken tomean the salt preparations as used clinically. On this basis, levobupivacaine is based upon base concentrations whereas bupivacaine and ropivacaine are based upon hydrochloride salt concentrations.

References

  1. Åberg G, Dhuner K-G, Sydnes G. Studies on the duration of local anaesthesia: structure/activity relationships in a series of homologous local anaesthetics. Acta Pharmacol Toxicol 1977; 41: 432–43

    Article  Google Scholar 

  2. Albright GA. Cardiac arrest following regional anesthesia with etidocaine or bupivacaine. Anesthesiology 1979; 51: 285–7

    Article  PubMed  CAS  Google Scholar 

  3. Prentiss JE. Cardiac arrest following caudal anesthesia. Anesthesiology 1979; 50: 51–3

    Article  PubMed  CAS  Google Scholar 

  4. Åberg G. Studies on mepivacaine and its optically active isomers with special reference to vasoactive properties [PhD thesis]. Linköping University, 1972

  5. Åkerman B. Studies on the relative pharmacological effects of enantiomers of local anesthetics with special regard to block of nervous excitation [PhD thesis]. Uppsala University, 1973

  6. Åberg G. Toxicological and local anesthetic effects of optically active isomers of two local anesthetic compounds. Acta Pharmacol Toxicol 1972; 31: 273–86

    Article  Google Scholar 

  7. Åkerman B, Hellberg IB, Trossvik C. Primary evaluation of the local anesthetic properties of the amino amide agent ropivacaine (LEA 103). Acta Anaesth Scand 1988; 32: 571–8

    Article  PubMed  Google Scholar 

  8. Reiz S, Nath S. Cardiotoxicity of local anaesthetic agents. Br J Anaesth 1986; 58: 736–46

    Article  PubMed  CAS  Google Scholar 

  9. Hogan Q. Local anesthetic toxicity: an update. Reg Anesth 1996; 21(6S): 43–50

    PubMed  CAS  Google Scholar 

  10. Lee-Son S, Wang GK, Concus A, et al. Stereoselective inhibition of neuronal sodium channels by local anesthetics: evidence for two sites of action? Anesthesiology 1992; 77: 324–35

    Article  PubMed  CAS  Google Scholar 

  11. Nau C, Vogel W, Hempelmann G, et al. Stereoselectivity of bupivacaine in local anesthetic-sensitive ion channels of peripheral nerve. Anesthesiology 1999; 91: 786–95

    Article  PubMed  CAS  Google Scholar 

  12. Berman MF. Ropivacaine and the cardiac sodium current. Anesthesiology 1989; 71: A1152

    Article  Google Scholar 

  13. Valenzuela C, Snyders DJ, Bennett PB, et al. Stereoselective block of cardiac sodium channels by bupivacaine in guineapig ventricular myocytes. Circulation 1995; 92: 3014–24

    Article  PubMed  CAS  Google Scholar 

  14. Arlock P. Actions of three local anaesthetics: lidocaine, bupivacaine and ropivacaine on guinea-pig papillary muscle sodium channels (Vmax). Pharmacol Toxicol 1988; 63: 96–104

    Article  PubMed  CAS  Google Scholar 

  15. Vanhoutte F, Vereecke J, Verbeke N, et al. Stereoselective effects of the enantiomers of bupivacaine on the electrophysiological properties of the guinea-pig papillary muscle. Br J Pharmacol 1991; 103: 1271–81

    Article  Google Scholar 

  16. Harding DP, Collier PA, Huckle RM, et al. Cardiotoxic effects of levobupivacaine, bupivacaine and ropivacaine: an in vitro study in guinea-pig and human cardiac muscle. Br J Pharmacol 1998; 125 Suppl.: 127P

    Article  Google Scholar 

  17. Moller R, Covino BG. Cardiac electrophysiologic properties of bupivacaine and lidocaine compared with those of ropivacaine, a new amide local anesthetic. Anesthesiology 1990; 72: 322–9

    Article  PubMed  CAS  Google Scholar 

  18. Lipka LJ, Jiang M, Tseng G. Differential effects of bupivacaine on cardiac K channels: role of channel inactivation and sub-unit composition in drug-channel interaction. J Cardiovasc Electrophysiol 1998; 9: 727–42

    Article  PubMed  CAS  Google Scholar 

  19. Wulf H, Petry A, Godicke J. The cardiac effects of bupivacaine and ropivacaine on contractility and action potentials of isolated guinea-pig atria: influence of different extracellular potassium concentrations. Anaesthesist 1993; 42: 516–20

    PubMed  CAS  Google Scholar 

  20. Valenzuela C, Delpon E, Tamkun MM, et al. Stereoselective block of a human cardiac potassium channel (Kv1.5) by bupivacaine enantiomers. Biophys J 1995; 69: 418–27

    Article  PubMed  CAS  Google Scholar 

  21. Valenzuela C, Delpon E, Franqueza L, et al. Effects of ropivacaine on a potassium channel (hKv1.5) cloned from human ventricle. Anesthesiology 1997; 86: 718–28

    Article  PubMed  CAS  Google Scholar 

  22. Nancarrow C, Rutten AJ, Runciman WB, et al. Myocardial and cerebral drug concentrations and the mechanisms of death after fatal intravenous doses of lidocaine, bupivacaine and ropivacaine in the sheep. Anesth Analg 1989; 69, 276–83

    Article  PubMed  CAS  Google Scholar 

  23. Feldman HS, Covino BM, Sage DJ. Direct chronotropic and inotropic effects of local anesthetic agents in isolated guineapig atria. Reg Anesth 1982; 7: 149 56

    CAS  Google Scholar 

  24. Lynch C. Depression of myocardial contractility in vitro by bupivacaine, etidocaine, and lidocaine. Anesth Analg 1986; 65: 551–9

    PubMed  CAS  Google Scholar 

  25. Sanchez-Chapula J. Effects of bupivacaine on membrane currents of guinea-pig ventricular myocytes. Eur J Pharmacol 1988; 156: 303–8

    Article  PubMed  CAS  Google Scholar 

  26. Honerjager P. The contribution of Na channel block to the negative inotropic effect of antiarrhythmic drugs. Basic Res Cardiol 1986; 81: 33–7

    PubMed  Google Scholar 

  27. Desai SP, Marsh JD, Allen PD. Contractility effects of local anesthetics in the presence of sodium channel blockade. Reg Anesth 1989; 14: 58–62

    PubMed  CAS  Google Scholar 

  28. Eledjam JJ, de la Coussaye JE, Brugada J, et al. In vitro study on mechanisms of bupivacaine-induced depression of myocardial contractility. Anesth Analg 1989; 69: 732–5

    Article  PubMed  CAS  Google Scholar 

  29. de la Coussaye JE, Bassoul B, Albat B, et al. Experimental evidence in favor of role of intracellular actions of bupivacaine in myocardial depression. Anesth Analg 1992; 74: 698–702

    Google Scholar 

  30. Sztark F, Malgat M, Dabadie P, et al. Comparison of the effects of bupivacaine and ropivacaine on heart cell mitochondrial bioenergetics. Anesthesiology 1998; 88: 1340–9

    Article  PubMed  CAS  Google Scholar 

  31. Scutari G, Marian M, Bindoli A, et al. Mitochondrial effects of L-ropivacaine, a new local anesthetic. Biochem Pharmacol 1998; 56: 1633–7

    Article  PubMed  CAS  Google Scholar 

  32. Weinberg GL Palmer JW, VadeBoncouer TR, et al. Bupivacaine inhibits acylcarnitine exchange in cardiac mitochondria. Anesthesiology 2000; 92: 523–8

    Article  PubMed  CAS  Google Scholar 

  33. Butterworth IV JF, Brownlow RC, Leith JP, et al. Bupivacaine inhibits cyclic-3′,5′-adenosine monophosphate production: a possible contributing factor to cardiovascular toxicity. Anesthesiology 1993; 79: 88–95

    Article  PubMed  Google Scholar 

  34. Simonetti MPB, Fernandes L. S(−) bupivacaine and RS(±) bupivacaine: a comparison of effects on the right and left atria of the rat. Reg Anesth 1997: 22 Suppl.: 58

    Google Scholar 

  35. Pitkanen M, Feldman HS, Arthur GR, et al. Chronotropic and inotropic effects of ropivacaine, bupivacaine, and lidocaine in the spontaneously beating and electrically paced isolated, perfused rabbit heart. Reg Anesth 1992; 17: 183–92

    PubMed  CAS  Google Scholar 

  36. Mazoit JX, Boico O, Samii K. Myocardial uptake of bupivacaine: II. Pharmacokinetics and pharmacodynamics of bupivacaine enantiomers in the isolated perfused rabbit heart. Anesth Analg 1993; 77: 477–82

    CAS  Google Scholar 

  37. Mazoit JX, Decaux A, Bouaziz H, et al. Comparative effect of racemic bupivacaine, levobupivacaine and ropivacaine on isolated rabbit heart. Anesthesiology 1999; 91(3A): A885

    Google Scholar 

  38. Graf BM, Martin E, Bosnjak ZJ, et al. Stereospecific effect of bupivacaine isomers on atrioventricular conduction in the isolated perfused guinea-pig heart. Anesthesiology 1997; 86: 410–9

    Article  PubMed  CAS  Google Scholar 

  39. Kasten GW, Martin ST. Comparison of resuscitation of sheep and dogs after bupivacaine-induced cardiovascular collapse. Anesth Analg 1986; 65: 1029–32

    PubMed  CAS  Google Scholar 

  40. Rutten AJ, Nancarrow C, Mather LE, et al. Hemodynamic and central nervous system effects of intravenous bolus doses of lidocaine, bupivacaine, and ropivacaine in sheep. Anesth Analg 1989; 69: 291–9

    Article  PubMed  CAS  Google Scholar 

  41. Mather LE. Disposition of mepivacaine and bupivacaine enantiomers in sheep. Br J Anaesth 1991; 67; 239–46

    Article  PubMed  CAS  Google Scholar 

  42. Huang YF, Pryor ME, Mather LE, et al. Cardiovascular and central nervous system effects of bupivacaine and levobupivacaine in sheep. Anesth Analg 1998: 86: 797–804

    PubMed  CAS  Google Scholar 

  43. Chang D-HT, Ladd LA, Wilson KA, et al. Tolerability of large dose intravenous levobupivacaine in sheep. Anesth Analg 2000; 91: 671–9

    Article  PubMed  CAS  Google Scholar 

  44. Chang DH-T, Ladd LA, Copeland S, et al. Direct cardiac effects of intracoronary bupivacaine, levobupivacaine and ropivacaine in the sheep. Br J Pharmacol. In press

  45. Block A, Covino BG. Effect of local anesthetic agents on cardiac conduction and contractility. Reg Anesth 1981; 6: 55–61

    CAS  Google Scholar 

  46. Morrison SG, Dominguez JJ, Frascarolo P, et al. A comparison of the electrocardiographic cardiotoxic effects of racemic bupivacaine, levobupivacaine, and ropivacaine in anesthetized swine. Anesth Analg 2000; 90: 1308–14

    Article  PubMed  CAS  Google Scholar 

  47. Denson D, Behbehani M, Gregg R. Enantiomer-specific effects of an intravenously administered arrhythmogenic dose of bupivacaine on neurons of the nucleus tractus solitarius and the cardiovascular system in the anesthetized rat. Reg Anesth 1992; 17: 311–6

    PubMed  CAS  Google Scholar 

  48. Feldman HS, Arthur GR, Covino BG. Comparative systemic toxicity of convulsant and supraconvulsant doses of intravenous ropivacaine, bupivacaine, and lidocaine in the conscious dog. Anesth Analg 1989; 69: 794–801

    PubMed  CAS  Google Scholar 

  49. Feldman HS, Arthur GR, Pitkanen M, et al. Treatment of acute systemic toxicity after the rapid intravenous injection of ropivacaine and bupivacaine in the conscious dog. Anesth Analg 1991; 73: 373–84

    Article  PubMed  CAS  Google Scholar 

  50. Jorfeldt L, Löfström B, Pernow B, et al. The effect of local anaesthetics on the central circulation and respiration in man and dog. Acta Anaesth Scand 1968; 12: 153–69

    Article  PubMed  CAS  Google Scholar 

  51. Mather LE, Long GJ, Thomas J. The intravenous toxicity and clearance of bupivacaine in man. Clin Pharmacol Ther 1971; 12: 935–43

    PubMed  CAS  Google Scholar 

  52. Mather LE, Tucker GT, Murphy TM, et al. Cardiovascular and subjective central nervous system effects of long-acting local anaesthetics in man. Anaesth Intens Care 1979; 7: 215–21

    CAS  Google Scholar 

  53. Moore DC, Mather LE, Bridenbaugh LD, et al. Bupivacaine (Marcaine): an evaluation of its tissue and systemic toxicity in humans. Acta Anaesth Scand 1977; 21: 109–21

    Article  PubMed  CAS  Google Scholar 

  54. Scott DB, Lee A, Fagan D, et al. Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg 1989; 69: 563–9

    PubMed  CAS  Google Scholar 

  55. Knudsen K, Beckman Suurkula M, Blomberg S, et al. Central nervous and cardiovascular effects of i.V. infusions of ropivacaine, bupivacaine and placebo in volunteers. Br J Anaesth 1997; 78: 507–14

    Article  PubMed  CAS  Google Scholar 

  56. Bardsley H, Gristwood R, Baker H, et al. A comparison of the cardiovascular effects of levobupivacaine and rac-bupivacaine following intravenous administration to healthy volunteers. Br J Clin Pharmacol 1998; 46: 245–9

    Article  PubMed  CAS  Google Scholar 

  57. Plowman AN, Bolsin S, Mather LE. Central nervous system toxicity attributable to epidural ropivacaine hydrochloride. Anaesth Intens Care 1998; 26: 204–6

    CAS  Google Scholar 

  58. Kopacz DJ, Allen HW. Accidental intravenous levobupivacaine. Anesth Analg 1999; 89: 1027–9

    PubMed  CAS  Google Scholar 

  59. Ala-Kokko TI, Löppönen A, Alahuhta S. Two instances of central nervous system toxicity in the same patient following repeated ropivacaine-induced brachial plexus block. Acta Anaesth Scand 2000; 44: 623–6

    Article  PubMed  CAS  Google Scholar 

  60. Polley LS, Columb MO, Naughton NN, et al. Relative analgesic potencies of ropivacaine and bupivacaine for epidural analgesia in labor: implications for therapeutic indexes. Anesthesiology 1999; 90: 944–50

    Article  PubMed  CAS  Google Scholar 

  61. Capogna G, Celleno D, Fusco P, et al. Relative potencies of bupivacaine and ropivacaine for analgesia in labour. Br J Anaesth 1999; 82: 371–3

    Article  PubMed  CAS  Google Scholar 

  62. Lyons G, Columb M, Wilson RC, et al. Epidural pain relief in labour: potencies of levobupivacaine and racemic bupivacaine. Br J Anaesth 1998; 81: 899–901

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge past grant support from the National Health and Medical Research Council of Australia, Astra Pharmaceuticals Pty Ltd (Australia) and Chiroscience R & D Ltd (UK) for performing many of their original studies underpinning the production of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence E. Mather.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mather, L.E., Chang, D.HT. Cardiotoxicity with Modern Local Anaesthetics. Drugs 61, 333–342 (2001). https://doi.org/10.2165/00003495-200161030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200161030-00002

Keywords

Navigation