Skip to main content
Log in

Optimum Treatment of Intracellular Infection

  • Disease Management
  • Published:
Drugs Aims and scope Submit manuscript

Summary

The intracellular location of some micro-organisms has been early recognised as a critical point to explain failure of antibiotic therapy to eradicate such pathogens from infected hosts. Most often parasites invade ‘professional’ phagocytic cells, including neutrophils, monocytes and macrophages, by resisting the intracellular bactericidal phagolysosomal pathway. Alternatively, they may invade ‘non-professional’ phagocytic cells (cells with fewer phagocytic and bactericidal abilities) such as endothelial cells, or even cells without lysosomes such as erythrocytes.

The intracellular activity of an antibiotic depends on several factors including its ability to reach the eukaryotic cell membrane, its subcellular localisation as compared to that of the parasite, the possibility that the intracellular milieu may partially inactivate its activity, and the susceptibility of the intracellular form of the parasite. In vitro and animal models have been developed to investigate antibiotic activity against intracellular pathogens. However, it should be emphasised that only data obtained from patients give reliable information to define the optimum antibiotic regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holmes BH, Quie PG, Windhorst DB, et al. Protection of phagocytized bacteria from the killing action of antibiotics. Nature 1966; 210: 1131–3

    Article  PubMed  CAS  Google Scholar 

  2. Mandell GL. Interaction of intraleukocytic bacteria and antibiotics. J Clin Invest 1973; 52: 1673–9

    Article  PubMed  CAS  Google Scholar 

  3. Mandell GL, Vest TK. Killing of intraleukocytic Staphylococcus aureus by rifampin: in vitro and in vivo studies. J Infect Dis 1972; 125: 486–90

    Article  PubMed  CAS  Google Scholar 

  4. Moulder JW. Comparative biology of intracellular parasitism. Microbiol Rev 1985; 49: 239–337

    Google Scholar 

  5. Hackstadt T, Williams JC. Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci USA 1981; 78: 3240–4

    Article  PubMed  CAS  Google Scholar 

  6. Antoine JC, Prina E, Jouanne C, et al. Parasitophorous vacuoles of Leishmania amazonensis infected macrophages maintain an acidic pH. Infect Immun 1990; 58: 779–87

    PubMed  CAS  Google Scholar 

  7. Mukkada AJ, Meade JC, Glaser TA, et al. Enhanced metabolism of Leishmania donovani amastigotes at acid pH: an adaptation for intracellular growth. Science 1985; 229: 1099–2001

    Article  PubMed  CAS  Google Scholar 

  8. Prokesch RC, Hand WL. Antibiotic entry into human polymorphonuclear leukocytes. Antimicrob Agents Chemother 1982; 21: 373–80

    Article  PubMed  CAS  Google Scholar 

  9. Johnson JD, Hand WL, Francis JB, et al. Antibiotic uptake by alveolar macrophages. J Lab Clin Med 1980; 95: 429–39

    PubMed  CAS  Google Scholar 

  10. Vaudaux P, Waldvogel FA. Gentamicin antibacterial activity in the presence of human polymorphonuclear leukocytes. Anti-microb Agents Chemother 1979; 16: 743–9

    Article  CAS  Google Scholar 

  11. Forsgren A, Bellahsene A. Antibiotic accumulation in human polymorphonuclears and lymphocytes. Scand J Infect Dis 1985; 44: 16–23

    CAS  Google Scholar 

  12. Hand WL, King-Thompson NL. Contrasts between phagocyte antibiotic uptake and subsequent intracellular bactericidal activity. Antimicrob Agents Chemother 1986; 29: 135–40

    Article  PubMed  CAS  Google Scholar 

  13. Park JK, Dow RC. The uptake and localization of tetracycline in human blood cells. Br J Exp Pathol 1970; 51: 179

    PubMed  CAS  Google Scholar 

  14. Brown KN, Percival A. Penetration of antimicrobials into tissue culture cells and leukocytes. Scand J Infect Dis 1978; 14: 251–60

    CAS  Google Scholar 

  15. Hand WL, Boozer RM, King-Thompson WL. Antibiotic uptake by alveolar macrophages of smokers. Antimicrob Agents Chemother 1985; 27: 42–5

    Article  PubMed  CAS  Google Scholar 

  16. Ekzemplyarov ON. Penetration of tetracycline and streptomycin into macrophages cultured in vitro. Antibiotiki 1965; 10: 312

    Google Scholar 

  17. Easmon CSF, Crane JP. Comparative uptake of rifampin and rifapentine (DL 473) by human neutrophils. J Antimicrob Chemother 1984; 13: 585–91

    Article  PubMed  CAS  Google Scholar 

  18. Miller MF, Martin JR, Johnson P, et al. Erythromycin uptake and accumulation by human polymorphonuclear leukocytes and efficacy of erythromycin in killing ingested Legionella pneumophila. J Infect Dis 1984; 149: 714–8

    Article  PubMed  CAS  Google Scholar 

  19. Carlier MB, Zenebergh A, Tulkens PM. Cellular uptake and subcellular distribution of roxithromycin and erythromycin in phagocytic cells. J Antimicrob Chemother 1987; 20 Suppl.: 47–56

    Article  PubMed  CAS  Google Scholar 

  20. Hand WL, King-Thompson NL. Membrane transport of clindamycin in alveolar macrophages. Antimicrob Agents Chemother 1982; 21: 241–7

    Article  PubMed  CAS  Google Scholar 

  21. Ishiguro M, Koga H, Kohno S, et al. Penetration of macrolides into human polymorphonuclear leukocytes. J Antimicrob Chemother 1989; 24: 719–30

    Article  PubMed  CAS  Google Scholar 

  22. Gemmell CG. Macrolides and host defenses to respiratory tract pathogens. J Hosp Infect 1991; 19 Suppl.A: 11–9

    Article  PubMed  Google Scholar 

  23. Gladue RP, Bright GM, Isaacson ME, et al. In vitro and in vivo uptake of azithromycin (CP-62,993) in phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother 1989; 33: 277–82

    Article  PubMed  CAS  Google Scholar 

  24. Anderson R, Joone G, van Rensburg CEJ. An in vitro evaluation of the cellular uptake and intraphagocytic bioactivity of clarithromycin (A-56268, TE-031) a new macrolide antimicrobial agent. J Antimicrob Chemother 1988; 22: 923–33

    Article  PubMed  CAS  Google Scholar 

  25. Easmon CSF, Crane JP. Cellular uptake of clindamycin and lin-comycin. Br J Exp Pathol 1984; 65: 725–30

    PubMed  CAS  Google Scholar 

  26. Klempner MS, Styrt B. Clindamycin uptake by human neutrophils. J Infect Dis 1981; 144: 472–9

    Article  PubMed  CAS  Google Scholar 

  27. Carlier MB, Scorneaux B, Zeneberg A, et al. Cellular uptake localization and activity of fluoroquinolones in uninfected and infected macrophages. J Antimicrob Chemother 1990; 26: 27–39

    Article  PubMed  CAS  Google Scholar 

  28. Pascual A, Garcia I, Perea EJ. Fluorometric measurement of ofloxacin uptake by human polymorphonuclear leukocytes. Antimicrob Agents Chemother 1989; 33: 653–6

    Article  PubMed  CAS  Google Scholar 

  29. Perea EJ, Garcia I, Pascual A. Comparative penetration of lomefloxacin and other quinolones into human phagocytes. Am J Med 1992; 92 Suppl.4A: 48–51

    Article  Google Scholar 

  30. Pascual A, Garcia I, Conejo MC, et al. Fluorometric and high-performance liquid Chromatographic measurement of quinolone uptake by human neutrophils. Eur J Clin Microbiol Infect Dis 1991; 10: 969–71

    Article  PubMed  CAS  Google Scholar 

  31. Easmon CSF, Crane JP. Uptake of ciprofloxacin by human neutrophils. J Antimicrob Chemother 1985; 16: 67–73

    Article  PubMed  CAS  Google Scholar 

  32. Garcia I, Pascual A, Guzman MC, et al. Uptake and intracellular activity of sparfloxacin in human polymorphonuclear leukocytes and tissue culture cells. Antimicrob Agents Chemother 1992; 36: 1053–6

    Article  PubMed  CAS  Google Scholar 

  33. Climax J, Lenehan TJ, Lambe R, et al. Interaction of animicrobial agents with human peripheral blood leukocytes: uptake and intracellular localization of certain sulfonamides and tri-methoprim. J Antimicrob Chemother 1986; 17: 489–98

    Article  PubMed  CAS  Google Scholar 

  34. Lam C, Mathison GE. Effect of low intraphagolysosomal pH on antimicrobial activity of antibiotics against ingested staphylococci. J Med Microbiol 1983; 16: 309–16

    Article  PubMed  CAS  Google Scholar 

  35. Maurin M, Benoliel AM, Bongrand P, et al. Phagolysosomal alkalinization and the bactericidal effect of antibiotics: the Coxiella burnetii paradigm. J Infect Dis 1992; 166: 1097–102

    Article  PubMed  CAS  Google Scholar 

  36. Maurin M, Raoult D. Phagolysosomal alkalinization and intra-cellular killing of Staphylococcus aureus by amikacin. J Infect Dis 1994; 169: 330–6

    Article  PubMed  CAS  Google Scholar 

  37. Drancourt M, Raoult D. Methodology of antibiotics testing for intracellular pathogens. In: Raoult D, editor. Antimicrobial agents and intracellular pathogens. 5th ed. Boca Raton: CRC Press, 1993: 71–85

    Google Scholar 

  38. Cooksey RC, Crawford JT, Jacobs WR, et al. A rapid method for screening antimicrobial agents for activities against a strain of Mycobacterium tuberculosis expressing firefly luciferase. Antimicrob Agents Chemother 1993; 37: 1348–52

    Article  PubMed  CAS  Google Scholar 

  39. Raoult D, Walker DH. Rickettsia rickettsii and other spotted fever group rickettsiae. In Mandell GL, Gordon RJ, Bennett JE, editors. Principles and practice of infectious diseases. 3rd ed. New York: Churchill Livingstone, 1990: 1465–69

    Google Scholar 

  40. Bella-Cueto F, Font-Creus B, Segura-Porta F, et al. Comparative, randomized trial of one-day doxycycline versus 10-day tetracycline therapy for Mediterranean spotted fever. J Infect Dis 1987; 155: 1056–58

    Article  PubMed  CAS  Google Scholar 

  41. Huys J, Freyens P, Kayihigi J, et al. Treatment of epidemic typhus. A comparative study of chloramphenicol, trimetho-prim-sulphamethoxazole and doxycycline. Trans R Soc Trop Med Hyg 1973; 67: 718–21

    Article  PubMed  CAS  Google Scholar 

  42. Brown GW, Saunders JP, Singh S, et al. Single dose doxycycline therapy for scrub typhus. Trans R Soc Trop Med Hyg 1978; 72: 412–6

    Article  PubMed  CAS  Google Scholar 

  43. Huys J, Kayhigi J, Freyens P, et al. Single-dose treatment of epidemic typhus with doxycyline. Chemotherapy 1973; 18: 314–7

    Article  PubMed  CAS  Google Scholar 

  44. Krause DW, Perine PL, McDade JE, et al. Treatment of louse-borne typhus fever with chloramphenicol, tetracycline or doxycycline. East Afr Med J 1975; 52: 421–7

    PubMed  CAS  Google Scholar 

  45. Perine PL, Krause DW, Awoke S, et al. Single-dose doxycycline treatment of louse-borne relapsing fever and epidemic typhus. Lancet 1974; II: 742–4

    Article  Google Scholar 

  46. Gudiol F, Pallares R, Carratala J, et al. Randomized double-blind evaluation of ciprofloxacin and doxycycline for Mediterranean spotted fever. Antimicrob Agents Chemother 1989; 33: 987–8

    Article  PubMed  CAS  Google Scholar 

  47. Raoult D, Gallais H, de Micco P, et al. Ciprofloxacin therapy for Mediterranean spotted fever. Antimicrob Agents Chemother 1986; 30: 606–7

    Article  PubMed  CAS  Google Scholar 

  48. Di Lascio G, Salvini S, Cermola S, et al. Use of pefloxacin in boutonneuse fever. Clin Ther 1991; 136: 101

    Google Scholar 

  49. Bernard E, Caries M, Politano S, et al. Rickettsiosis caused by Rickettsia conorii: treatment by ofloxacin. Rev Infect Dis 1989; 11 Suppl.5: 989–91

    Google Scholar 

  50. Ruiz-Beltran R, Herrero-Herrero JI. New quinolones in the treatment of Mediterranean spotted fever (MSF): a comparative study with other antibiotic regimens. In: Kazar J, Raoult D, editors. Rickettsiae and rickettsial diseases. Bratislava: Slovac Academy of Sciences, 1991: 714–6

    Google Scholar 

  51. Eaton M, Cohen MT, Shlim DR, et al. Ciprofloxacin treatment of typhus. JAMA 1989; 262: 772–3

    Article  PubMed  CAS  Google Scholar 

  52. Strand O, Stromberg A. Ciprofloxacin treatment of murine typhus. Scand J Infect Dis 1990; 22: 503–4

    Article  PubMed  CAS  Google Scholar 

  53. Me Clain JB, Joshi B, Rice R. Chloramphenicol, gentamicin, and ciprofloxacin against murine scrub typhus. Antimicrob Agents Chemother 1988; 32: 285–6

    Article  PubMed  CAS  Google Scholar 

  54. Bella F, Espejo E, Uriz S, et al. Randomized trial of five-day rifampin versus one-day doxycycline therapy for Mediterranean spotted fever. J Infect Dis 1991; 164: 433–4

    Article  PubMed  CAS  Google Scholar 

  55. Drancourt M, Raoult D. Antimicrobial therapy of rickettsial spotted fever. In: Raoult D, editor. Antimicrobial agents and intracellular pathogens. Boca Raton: CRC Press, 1993

    Google Scholar 

  56. Drancourt M, Raoult D. In vitro susceptibilities of Rickettsia rickettsii and Rickettsia conorii to roxithromycin and pristinamycin. Antimicrob Agents Chemother 1989; 33: 2146–8

    Article  PubMed  CAS  Google Scholar 

  57. Maurin M, Raoult D. In vitro susceptibilities of spotted fever group rickettsiae and Coxiella burnetii to clarithromycin. Antimicrob Agents Chemother 1993; 37: 2633–7

    Article  PubMed  CAS  Google Scholar 

  58. Powell OW, Kennedy KP, Mc Iver M, et al. Tetracycline in the treatment of Q fever. Aust Ann Med 1962; 11: 184–5

    PubMed  CAS  Google Scholar 

  59. Spelman DW. Q fever: a study of 111 consecutive cases. Med J Aust 1982; 1: 547–50

    PubMed  CAS  Google Scholar 

  60. Perez-del-Molino A, Aguado JM, Riancho JA, et al. Erythromycin and the treatment of Coxiella burnetii pneumonia. J Antimicrob Chemother 1991; 28: 455–9

    Article  PubMed  CAS  Google Scholar 

  61. Raoult D, Torres H, Drancourt M. Shell-vial assay: evaluation of a new technique for determining antibiotic susceptibility, tested in 13 isolates of Coxiella burnetii. Antimicrob Agents Chemother 1991; 35: 2070–7

    Article  PubMed  CAS  Google Scholar 

  62. Levy PY, Drancourt M, Etienne J, et al. Comparison of different antibiotic regimens for therapy of 32 cases of Q fever endocarditis. Antimicrob Agents Chemother 1991; 35: 533–7

    Article  PubMed  CAS  Google Scholar 

  63. Raoult D, Drancourt M, Vestris G. Bactericidal effect of Doxycycline associated with lysosomotropic agents on Coxiella burnetii in P388D1 cells. Antimicrob Agents Chemother 1990; 34: 1512–4

    Article  PubMed  CAS  Google Scholar 

  64. Dawson JE, Anderson BE, Fishbein DB, et al. Isolation and characterization of an Ehrlichia sp. from a patient diagnosed with human Ehrlichiosis. J Clin Microbiol 1991; 29: 2741–45

    PubMed  CAS  Google Scholar 

  65. Rikihisa Y. The tribe Ehrlichia and Ehrlichial diseases. Clin Microbiol Rev 1991; 4: 286–308

    PubMed  CAS  Google Scholar 

  66. Dumler JS, Brouqui P, Aronson J, et al. Identification of Ehrlichia in human tissue. N Engl J Med 1991; 325: 1109–10

    Article  PubMed  CAS  Google Scholar 

  67. Brouqui P, Raoult D. In vitro antibiotic susceptibility of the newly recognized agent of human ehrlichiosis: Ehrlichia chaffeensis. Antimicrob Agents Chemother 1992; 36: 2799–803

    Article  PubMed  CAS  Google Scholar 

  68. Centers for Disease Control and Prevention. Recommendations for the prevention and management of Chlamydia trachomatis infections. MMWR Morbid Mortal Wkly Rep 1993; 42: 1–39

    Google Scholar 

  69. Magat AH, Alger LS, Nagey DA, et al. Double-blind randomized study comparing amoxicillin and erythromycin for the treatment of Chlamydia trachomatis in pregnancy. Obstet Gynecol 1993; 81: 745–9

    PubMed  CAS  Google Scholar 

  70. Centers for Disease Control. 1989 sexually transmitted diseases treatment guidelines. MMWR Morbid Mortal Wkly Rep 1989; 38 Suppl.8: 1–43

    Google Scholar 

  71. Toomey KE, Barnes RC. Treatment of Chlamydia trachomatis genital infection. Rev Infect Dis 1990; 12 Suppl.6: 645–55

    Article  Google Scholar 

  72. Weber JT, Johnson RE. New treatments for Chlamydia trachomatis genital infection. Clin Infect Dis 1995; 20 Suppl.1: 66–71

    Article  Google Scholar 

  73. Martin DH, Mroczkowski TF, Dalu ZA, et al. A controlled trial of a single dose of azithromycin for the treatment of chlamydial urethritis and cervicitis. N Engl J Med 1992; 327: 921–5

    Article  PubMed  CAS  Google Scholar 

  74. Crombleholme WR, Schachter J, Grossman M, et al. Amoxicillin therapy for Chlamydia trachomatis in pregnancy. Obstet Gynecol 1990; 75: 752–6

    PubMed  CAS  Google Scholar 

  75. Centers for Disease Control. Psittacosis surveillance, annual summary 1975–1984. Atlanta: Centers for Disease Control, 1987

    Google Scholar 

  76. Schachter J. Chlamydia psittaci — ‘reemergence’ of a forgotten pathogen. N Engl J Med 1986; 315: 189–91

    Article  PubMed  CAS  Google Scholar 

  77. Grayston JT. Chlamydia pneumoniae. In Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. 4th ed. New York: Churchill Livingstone, 1995: 1696–701

    Google Scholar 

  78. Horwitz MA, Silverstein SC. Intracellular multiplication of legionnaire’s disease bacteria (Legionella pneumophila) in human monocytes is reversibly inhibited by erythromycin and rifampin. J Clin Invest 1983; 71: 15–26

    Article  PubMed  CAS  Google Scholar 

  79. Vilde VL, Dournon E, Rajagopalan P. Inhibition of Legionella pneumophila multiplication within human macrophages by antimicrobial agents. Antimicrob Agents Chemother 1986; 30: 743–8

    Article  PubMed  CAS  Google Scholar 

  80. Peters DH, Clissold SP. Clarithromycin: a review of its antimicrobial activity, pharmacokinetic properties and therapeutic potential. Drugs 1992; 44: 117–64

    Article  PubMed  CAS  Google Scholar 

  81. Fitzgeorge RB, Gibson DH, Jepras R, et al. Studies on ciprofloxacin therapy of experimental legionnaire’s disease. J Infect 1985; 10: 194–203

    Article  PubMed  CAS  Google Scholar 

  82. Unertl KE, Lenhart FL, Forst H, et al. Brief report: ciprofloxacin in the treatment of legionellosis in critically ill patients including those cases unresponsive to erythromycin. Amer J Med 1989; 87 Suppl.5A: 128S–31S

    Article  PubMed  CAS  Google Scholar 

  83. Dournon E, Mayard C, Wolff M, et al. Comparison of the activity of three antibiotic regimens in severe legionnaire’s disease. J Antimicrob Chemother 1990; 26 Suppl.B: 129–39

    Article  PubMed  Google Scholar 

  84. Hall WH. Modern chemotherapy of brucellosis in humans. Rev Infect Dis 1990; 12: 1060–99

    Article  PubMed  CAS  Google Scholar 

  85. Joint FAO/WHO. 1986 FAO/WHO Expert Committee on Brucellosis (6th report). WHO Technical Report Series No. 740. Geneva: World Health Organization, 1986: 56–7

    Google Scholar 

  86. Acocella G, Bertrand A, Beytout J, et al. Comparison of three different regimens in the treatment of acute brucellosis: a multicenter multinational study. Antimicrob Agents Chemother 1989; 23: 433–9

    Article  CAS  Google Scholar 

  87. Lang R, Rubinstein E. Quinolones for the treatment of brucellosis. J Antimicrob Chemother 1992; 29: 357–63

    Article  PubMed  CAS  Google Scholar 

  88. Lubani MM, Dudkin KI, Sharda DC, et al. A multi-center therapeutic study of 1100 children with brucellosis. Pediatr Infect Dis J 1989; 8: 75–8

    Article  PubMed  CAS  Google Scholar 

  89. Young EJ. Treatment of brucellosis in humans. In Young EJ, Corbel MJ, editors. Brucellosis: clinical and laboratory aspects. Boca Raton: CRC Press, 1989: 127–41

    Google Scholar 

  90. Ariza J, Gudiol F, Pallares R, et al. Treatment of human brucellosis with doxycycline plus rifampin or doxycycline plus streptomycin. Ann Intern Med 1992; 117: 25–30

    PubMed  CAS  Google Scholar 

  91. Colmenero JD, Fernandez-Gallardo LC, Agundez JAG, et al. Possible implications of doxycycline-rifampin interaction for treatment of brucellosis. Antimicrob Agents Chemother 1994; 38: 2798–802

    Article  PubMed  CAS  Google Scholar 

  92. Pillay N, Adams EB, North-Coobes D. Comparative trial of amoxycillin and chloramphenicol in treatment of typhoid fever in adults. Lancet 1975; II: 332–4

    Google Scholar 

  93. Herzog C. Chemotherapy of typhoid fever. Infection 1976; 4: 166–73

    Article  PubMed  CAS  Google Scholar 

  94. Brodie J, MacQueen IA. Effect of trimethoprim-sul-famethoxazole on typhoid and salmonella carriers. BMJ 1970; 3: 318–9

    Article  PubMed  CAS  Google Scholar 

  95. Stanley PJ, Flegg PJ, Mandal B et al. Open study of ciprofloxacin in enteric fever. J Antimicrob Chemother 1989; 23: 789–91

    Article  PubMed  CAS  Google Scholar 

  96. Sabbour MS, Osman LM. Experience with ofloxacin in enteric fever. J Chemother 1990; 2: 113–5

    PubMed  CAS  Google Scholar 

  97. Sarma PS, Durairaj P. Randomized treatment of patients with typhoid and paratyphoid fevers using norfloxacin or chloramphenicol. Trans R Soc Trop Med Hyg 1991; 85: 670–1

    Article  PubMed  CAS  Google Scholar 

  98. Arnold K, Hong CS, Nelwan R, et al. Randomized comparative study of fleroxacine and chloramphenicol in typhoid fever. Amer J Med 1993; 94 Suppl. 195–200

    Google Scholar 

  99. Lightfoot NF, Ahmad F, Cowden J. Management of institutional outbreaks of salmonella gastroenteritis. J Antimicrob Chemother 1990; 26: 37–46

    Article  PubMed  Google Scholar 

  100. Rowe B, Ward LR, Threlfall ET. Spread of multiresistant S. typhi. Lancet 1990; 336: 1065–6

    Article  Google Scholar 

  101. Rowe B, Ward LR, Threlfall EJ. Ciprofloxacin-resistant Salmonella typhi in the UK. Lancet 1995; 346: 1302

    Article  PubMed  CAS  Google Scholar 

  102. Freerksen E, Rosenfiled M, Freerksen R, et al. Treatment of chronic salmonella carriers. Chemotherapy 1977; 23: 192–5

    Article  PubMed  CAS  Google Scholar 

  103. Rodriguez-Noriega E, Andrade-Villaneuva J, Amaya-Tapia G. Quinolones in the treatment of Salmonella carriers. Rev Infect Dis 1989; 11 Suppl.: 1179–87

    Article  Google Scholar 

  104. Sammalkorpi K, Lahdevirta J, Makela R. Treatment of chronic Salmonella carriers with ciprofloxacin. Lancet 1987; II: 164–5

    Article  Google Scholar 

  105. Nelson JD, Kusmiesz H, Jackson LH, et al. Treatment of salmonella gastroenteritis with ampicillin, amoxicillin, or placebo. Pediatrics 1980; 65: 1225–30

    Google Scholar 

  106. Gayrand M, Scavizzi MR, Mollaret HH, et al. Antibiotic treatment of Yersinia enterocolitica septicemia: a retrospective review of 43 cases. Clin Infect Dis 1993; 17: 404–10

    Google Scholar 

  107. World Health Organization. Yersiniosis: EURO reports and studies Nr 60 [reports on a 1981 WHO meeting]. Copenhagen: WHO Regional Office for Europe, 1983

    Google Scholar 

  108. Scavizzi MR, Alonso JM, Philippon AM, et al. Failure of newer beta-lactam antibiotics for murine Yersinia enterocolitica infection. Antimicrob Agents Chemother 1987; 31: 523–6

    Article  PubMed  CAS  Google Scholar 

  109. Noble RC. Failure of cefotaxime in the treatment of Yersinia enterocolitica sepsis despite in vitro susceptibility. Curr Ther Res 1989; 46: 692–4

    Google Scholar 

  110. Blanchard A, Montagnier L. AIDS-associated mycoplasmas. Annu Rev Microbiol 1994; 48: 687–712

    Article  PubMed  CAS  Google Scholar 

  111. Smith CB, Friedewald WT, Chanock RM. Shedding of My co-plasma pneumoniae after tetracycline and erythromycin therapy. N Engl J Med 1967; 276: 1172–3

    Article  PubMed  CAS  Google Scholar 

  112. Evans RT, Taylor-Robinson D. The incidence of tetracycline-resistant strains of Ureaplasma urealyticum. J Antimicrob Chemother 1978; 4: 57–9

    Article  PubMed  CAS  Google Scholar 

  113. Taylor-Robinson D, Furr PM. Clinical antibiotic resistance of Ureaplasma urealyticum. Pediatr Infect Dis J 1986; 5 Suppl.: 335–7

    Article  Google Scholar 

  114. Taylor-Robinson D, Thomas BJ, Furr PM, et al. The association of Mycoplasma hominis with arthritis. Sex Transm Dis 1983; 10: 341–4

    PubMed  CAS  Google Scholar 

  115. Koutsky LA, Stamm WE, Brunham RC, et al. Persistence of Mycoplasma hominis after therapy: importance of tetracycline resistance and coexisting vaginal flora. Sex Transm Dis 1983; 10: 374–81

    PubMed  CAS  Google Scholar 

  116. Carithers HA. Cat scratch disease. Am J Dis Child 1985; 139: 1124–33

    PubMed  CAS  Google Scholar 

  117. English CK, Wear DJ, Margileth AM, et al. Cat scratch disease: isolation and culture of the bacterial agent. JAMA 1988; 259: 1347–52

    Article  PubMed  CAS  Google Scholar 

  118. Brenner DJ, Hollis DG, Moss CW, et al. Proposal of Afipia gen. nov., with Afipia felis sp. nov. (formerly the cat scratch disease Bacillus), Afipia clevelandensis sp. nov. (formerly the Cleveland Clinic Foundation Strain), Afipia broomeae sp. nov. and three unamed genospecies. J Clin Microbiol 1991; 29: 2450–60

    PubMed  CAS  Google Scholar 

  119. Regnery RL, Olson TG, Perkins A, et al. Serological response to Rochalimaea henselae antigen in suspected cat-scratch disease. Lancet 1992; 339: 1443–5

    Article  PubMed  CAS  Google Scholar 

  120. Maurin M, Lepocher H, Mallet D, et al. Antibiotics susceptibility of Afipia felis in axenic medium and in cells. Antimicrob Agents Chemother 1993; 37: 1410–3

    Article  PubMed  CAS  Google Scholar 

  121. Maurin M, Gasquet S, Ducco C, et al. Minimal inhibitory concentrations of 28 antibiotic compounds to 14 Bartonella (formerly Rochalimaea) isolates. Antimicrob Agents Chemother 1995; 39: 2387–91

    Article  PubMed  CAS  Google Scholar 

  122. Musso D, Drancourt M, Raoult D. Lack of bactericidal effect of antibiotics except aminoglycosides on Bartonella (Rochalimaea) henselae. J Antimicrob Chemother 1995; 36: 101–8

    Article  PubMed  CAS  Google Scholar 

  123. Stoler MH, Bonfiglio TA, Staigbigel MT, et al. An atypical subcutaneous infection associated with acquired immune deficiency syndrome. Am J Clin Pathol 1983; 80: 714–8

    PubMed  CAS  Google Scholar 

  124. Drancourt M, Mainardi J, Brouqui P, et al. Bartonella (Rochalimaea) quintana endocarditis in three homeless men. N Engl J Med 1995; 332: 419–23

    Article  PubMed  CAS  Google Scholar 

  125. Spach DH, Kanter AS, Daniels NA, et al. Bartonella (Rochalimaea) species as a cause of apparent ‘culture-negative’ endocarditis. Clin Infect Dis 1995; 20: 1044–7

    Article  PubMed  CAS  Google Scholar 

  126. Holmes AH, Greenough TC, Balady GJ, et al. Bartonella henselae endocarditis in an immunocompetent adult. Clin Infect Dis 1995; 21: 1004–7

    Article  PubMed  CAS  Google Scholar 

  127. Daly JS, Worthington MG, Brenner DJ, et al. Rochalimaea elizabethae sp.nov.isolated from a patient with endocarditis. J Clin Microbiol 1993; 872-81

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Raoult.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurin, M., Raoult, D. Optimum Treatment of Intracellular Infection. Drugs 52, 45–59 (1996). https://doi.org/10.2165/00003495-199652010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199652010-00004

Keywords

Navigation