Skip to main content
Log in

Pharmacokinetics of Antiretroviral Therapy in HIV-1-Infected Children

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The initiation of antiretroviral therapy has resulted in an impressive reduction in the rate of disease progression in AIDS and HIV-1-related deaths in children; however, there are still several major challenges to be faced in order to improve therapy. A major topic that needs to be dealt with is the establishment of the optimal dosage of antiretroviral therapy for children. This review presents the currently available peer-reviewed data on the pharmacokinetics of nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs) and fusion inhibitors (FIs) in children. In addition, the data are discussed in relation to the currently available European and US guidelines and the US FDA-approved drug labels.

High intra- and interpatient variability in pharmacokinetics are often observed for all antiretroviral drugs. The number of children included in the pharmacokinetic studies is often small and children are often divided into divergent groups using different dosage levels and/or drug formulations. For a substantial number of antiretroviral drugs, dosage recommendations, especially for young children, are still absent in the European and US guidelines. The recommended drug dosages in the guidelines are often different from that in the officially approved drug product label. In addition, the recommended drug dosages may deviate between the European and US guidelines. Thus, while practioners aim to meet the recommendations in the official guidelines, patients may receive highly divergent dosages of medication.

The high intra- and interpatient variability in pharmacokinetics of antiretroviral drugs in children hampers the application of fixed dosages of antiretroviral drugs. For PIs and NNRTIs, plasma drug levels correlate with viral suppression and drug toxicity. NRTIs are prodrugs that are intracellularly converted to their active triphosphate form and, therefore, plasma NRTI levels correlate poorly with viral suppression. Therapeutic drug monitoring of PIs and NNRTIs should be considered to optimise HIV therapy in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V

Similar content being viewed by others

References

  1. Peeters M, Courgnaud V, Abela B, et al. Risk to human health from a plethora of simian immunodeficiency viruses in primate bushmeat. Emerg Infect Dis 2002; 8(5): 451–7

    Article  PubMed  Google Scholar 

  2. Korber B, Muldoon M, Theiler H, et al. Timing the ancestor of the HIV-1 pandemic strains. Science 2000; 288(5472): 1789–96

    Article  PubMed  CAS  Google Scholar 

  3. UNAIDS. AIDS epidemic update: 2003. Geneva: UNAIDS/WHO, 2003

    Google Scholar 

  4. Palumbo PE, Raskino C, Fiscus S, et al. Predictive value of quantitative plasma HIV RNA and CD4+ lymphocyte count in HIV-infected infants and children. JAMA 1998; 279(10): 756–61

    Article  PubMed  CAS  Google Scholar 

  5. Scott GB, Hutto C, Makuch RW, et al. Survival in children with perinatally acquired human immunodeficiency virus type 1 infection. N Engl J Med 1989; 321(26): 1791–6

    Article  PubMed  CAS  Google Scholar 

  6. de Martino M, Tovo PA, Galli L, et al. Puberty in perinatal HIV-1 infection: a multicentre longitudinal study of 212 children. AIDS 2001; 15(12): 1527–34

    Article  PubMed  Google Scholar 

  7. Buehler JW, Berkelman RL, Curran JW. Reporting of AIDS: tracking HIV morbidity and mortality. JAMA 1989; 262(20): 2896–7

    Article  PubMed  CAS  Google Scholar 

  8. Gortmaker SL, Hughes M, Cervia J, et al. Effect of combination therapy including protease inhibitors on mortality among children and adolescents infected with HIV-1. N Engl J Med 2001; 345(21): 1522–8

    Article  PubMed  CAS  Google Scholar 

  9. Palella Jr FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 1998; 338(13): 853–60

    Article  PubMed  Google Scholar 

  10. Stretcher BN. Pharmacokinetic optimisation of antiretroviral therapy in patients with HIV infection. Clin Pharmacokinet 1995; 29(1): 46–65

    Article  PubMed  CAS  Google Scholar 

  11. Gao WY, Shirasaka T, Johns DG, et al. Differential phosphorylation of azidothymidine, dideoxycytidine, and dideoxyinosine in resting and activated peripheral blood mononuclear cells. J Clin Invest 1993; 91(5): 2326–33

    Article  PubMed  CAS  Google Scholar 

  12. Perno CF, Yarchoan R, Cooney DA, et al. Inhibition of human immunodeficiency virus (HIV-1/HTLV-IIIBa-L) replication in fresh and cultured human peripheral blood monocytes/macrophages by azidothymidine and related 2′,3′-dideoxynucleosides. J Exp Med 1988; 168(3): 1111–25

    Article  PubMed  CAS  Google Scholar 

  13. Fletcher CV, Acosta EP, Henry K, et al. Concentration-controlled zidovudine therapy. Clin Pharmacol Ther 1998; 64(3): 331–8

    Article  PubMed  CAS  Google Scholar 

  14. US Department of Health and Human Services. Guidelines for the use of antiretroviral agents in pediatric HIV infection [online]. Available from URL: http://www.aidsinfo.nih.gov/guidelines/pediatric/PED_032405.pdf [Accessed 2005 Jun 28]

  15. Sharland M, Blanche S, Castelli G, et al. PENTA guidelines for the use of antiretroviral therapy, 2004. HIV Med. 2004; 5 Suppl. 2: 61–86

    Article  PubMed  Google Scholar 

  16. US FDA, Center for Drug Evaluation and Research. A catalog of FDA-approved products [online]. Available from URL: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ [Accessed 2004 Mar 2]

  17. Balis FM, Pizzo PA, Eddy J, et al. Pharmacokinetics of zidovudine administered intravenously and orally in children with human immunodeficiency viras infection. J Pediatr 1989; 114(5): 880–4

    Article  PubMed  CAS  Google Scholar 

  18. Wintergerst U, Rolinski B, Vocks-Hauck M, et al. Pharmacokinetics of orally administered zidovudine in HIV-infected children and adults. Infection 1995; 23(6): 344–8

    Article  PubMed  CAS  Google Scholar 

  19. Pizzo PA, Eddy J, Falloon J, et al. Effect of continuous intravenous infusion of zidovudine (AZT) in children with symptomatic HIV infection. N Engl J Med 1988; 319(14): 889–96

    Article  PubMed  CAS  Google Scholar 

  20. McKinney Jr RE, Maha MA, Connor EM, et al. A multicenter trial of oral zidovudine in children with advanced human immunodeficiency viras disease. The Protocol 043 Study Group. N Engl J Med 1991; 324(15): 1018–25

    Article  PubMed  Google Scholar 

  21. Mueller BU, Pizzo PA, Farley M, et al. Pharmacokinetic evaluation of the combination of zidovudine and didanosine in children with human immunodeficiency virus infection. J Pediatr 1994; 125(1): 142–6

    Article  PubMed  CAS  Google Scholar 

  22. Bakshi SS, Britto P, Capparelli E, et al. Evaluation of pharmacokinetics, safety, tolerance, and activity of combination of zalcitabine and zidovudine in stable, zidovudine-treated pediatric patients with human immunodeficiency virus infection. AIDS Clinical Trials Group Protocol 190 Team. J Infect Dis 1997; 175(5): 1039–50

    Article  PubMed  CAS  Google Scholar 

  23. Boucher FD, Modlin JF, Weiler S, et al. Phase I evaluation of zidovudine administered to infants exposed at birth to the human immunodeficiency virus. J Pediatr 1993; 122(1): 137–44

    Article  PubMed  CAS  Google Scholar 

  24. Mirochnick M, Capparelli E, Connor J. Pharmacokinetics of zidovudine in infants: a population analysis across studies. Clin Pharmacol Ther 1999; 66(1): 16–24

    Article  PubMed  CAS  Google Scholar 

  25. Mirochnick M, Capparelli E, Dankner W, et al. Zidovudine pharmacokinetics in premature infants exposed to human immunodeficiency virus. Antimicrob Agents Chemother 1998; 42(4): 808–12

    PubMed  CAS  Google Scholar 

  26. Lewis LL, Venzon D, Church J, et al. Lamivudine in children with human immunodeficiency virus infection: a phase I/II study. The National Cancer Institute Pediatric Branch-Human Immunodeficiency Viras Working Group. J Infect Dis 1996; 174(1): 16–25

    Article  PubMed  CAS  Google Scholar 

  27. Mueller BU, Lewis LL, Yuen GJ, et al. Serum and cerebrospinal fluid pharmacokinetics of intravenous and oral lamivudine in human immunodeficiency virus-infected children. Antimicrob Agents Chemother 1998; 42(12): 3187–92

    PubMed  CAS  Google Scholar 

  28. Sokal EM, Roberts EA, Mieli-Vergani G, et al. A dose ranging study of the pharmacokinetics, safety, and preliminary efficacy of lamivudine in children and adolescents with chronic hepatitis B. Antimicrob Agents Chemother 2000; 44(3): 590–7

    Article  PubMed  CAS  Google Scholar 

  29. Moodley J, Moodley D, Pillay K, et al. Pharmacokinetics and antiretroviral activity of lamivudine alone or when coadministered with zidovudine in human immunodeficiency viras type 1-infected pregnant women and their offspring. J Infect Dis 1998; 178(5): 1327–33

    Article  PubMed  CAS  Google Scholar 

  30. Moodley D, Pillay K, Naidoo K, et al. Pharmacokinetics of zidovudine and lamivudine in neonates following coadministration of oral doses every 12 hours. J Clin Pharmacol 2001; 41(7): 732–41

    Article  PubMed  CAS  Google Scholar 

  31. King JR, Nachman S, Yogev R, et al. Single-dose pharmacokinetics of enteric-coated didanosine in HIV-infected children. Antivir Ther 2002; 7(4): 267–70

    PubMed  CAS  Google Scholar 

  32. Balis FM, Pizzo PA, Butler KM, et al. Clinical pharmacology of 2′,3′-dideoxyinosine in human immunodeficiency virusinfected children. J Infect Dis 1992; 165(1): 99–104

    Article  PubMed  CAS  Google Scholar 

  33. Mueller BU, Butler KM, Stocker VL, et al. Clinical and pharmacokinetic evaluation of long-term therapy with didanosine in children with HIV infection. Pediatrics 1994; 94(5): 724–31

    PubMed  CAS  Google Scholar 

  34. Fletcher CV, Brandage RC, Remmel RP, et al. Pharmacologie characteristics of indinavir, didanosine, and stavudine in human immunodeficiency virus-infected children receiving combination therapy. Antimicrob Agents Chemother 2000; 44(4): 1029–34

    Article  PubMed  CAS  Google Scholar 

  35. Hoetelmans RM, van Heeswijk RP, Profijt M, et al. Comparison of the plasma pharmacokinetics and renal clearance of didanosine during once and twice daily dosing in HIV-1 infected individuals. AIDS 1998; 12(17): F211–6

    Article  PubMed  CAS  Google Scholar 

  36. Keiser P, Turner D, Ramilo O, et al. An open-label pilot study of the efficacy and tolerability of once-daily didanosine versus twice-daily didanosine. Clin Infect Dis 1998; 27(2): 400–1

    Article  PubMed  CAS  Google Scholar 

  37. Abreu T, Plaisance K, Rexroad V, et al. Bioavailability of once-and twice-daily regimens of didanosine in human immunodeficiency virus-infected children. Antimicrob Agents Chemother 2000; 44(5): 1375–6

    Article  PubMed  CAS  Google Scholar 

  38. Wang Y, Livingston E, Patil S, et al. Pharmacokinetics of didanosine in antepartum and postpartum human immunodeficiency virus: infected pregnant women and their neonates: an AIDS clinical trials group study. J Infect Dis 1999; 180(5): 1536–41

    Article  PubMed  CAS  Google Scholar 

  39. Rongkavilit C, Thaithumyanon P, Chuenyam T, et al. Pharmacokinetics of stavudine and didanosine coadministered with nelfinavir in human immunodeficiency virus-exposed neonates. Antimicrob Agents Chemother 2001; 45(12): 3585–90

    Article  PubMed  CAS  Google Scholar 

  40. Shyu WC, Knupp CA, Pittman KA, et al. Food-induced reduction in bioavailability of didanosine. Clin Pharmacol Ther 1991; 50 (5 Pt 1): 503–7

    Article  PubMed  CAS  Google Scholar 

  41. Knupp CA, Milbrath R, Barbhaiya RH. Effect of time of food administration on the bioavailability of didanosine from a chewable tablet formulation. J Clin Pharmacol 1993; 33(6): 568–73

    PubMed  CAS  Google Scholar 

  42. Stevens RC, Rodman JH, Yong FH, et al. Effect of food and pharmacokinetic variability on didanosine systemic exposure in HIV-infected children. Pediatrie AIDS Clinical Trials Group Protocol 144 Study Team. AIDS Res Hum Retrovirases 2000; 16(5): 415–21

    Article  CAS  Google Scholar 

  43. Gibb D, Barry M, Ormesher S, et al. Pharmacokinetics of zidovudine and dideoxyinosine alone and in combination in children with HIV infection. Br J Clin Pharmacol 1995; 39(5): 527–30

    Article  PubMed  CAS  Google Scholar 

  44. Kline MW, Dunkle LM, Church JA, et al. A phase I/II evaluation of stavudine (d4T) in children with human immunodeficiency viras infection. Pediatrics 1995; 96 (2 Pt 1): 247–52

    PubMed  CAS  Google Scholar 

  45. Kaul S, Kline MW, Church JA, et al. Determination of dosing guidelines for stavudine (2′,3′-didehydro-3′-deoxythymidine) in children with human immunodeficiency viras infection. Antimicrob Agents Chemother 2001; 45(3): 758–63

    Article  PubMed  CAS  Google Scholar 

  46. Kline MW, Fletcher CV, Federici ME, et al. Combination therapy with stavudine and didanosine in children with advanced human immunodeficiency viras infection: pharmacokinetic properties, safety, and immunologie and virologic effects. Pediatrics 1996; 97 (6 Pt 1): 886–90

    PubMed  CAS  Google Scholar 

  47. HIV pharmacology news [online]. Available from URL: http://www.hivpharmacology.com [Accessed 2005 Jun 28]

  48. Hughes W, McDowell JA, Shenep J, et al. Safety and singledose pharmacokinetics of abacavir (1592U89) in human immunodeficiency virus type 1-infected children. Antimicrob Agents Chemother 1999; 43(3): 609–15

    PubMed  CAS  Google Scholar 

  49. Kline MW, Blanchard S, Fletcher CV, et al. A phase I study of abacavir (1592U89) alone and in combination with other antiretroviral agents in infants and children with human immunodeficiency virus infection. AIDS Clinical Trials Group 330 Team. Pediatrics 1999; 103(4): E47

    Article  PubMed  CAS  Google Scholar 

  50. Hazra R, Balis FM, Tullio AN, et al. Single-dose and steadystate pharmacokinetics of tenofovir disoproxil fumarate in human immunodeficiency virus-infected children. Antimicrob Agents Chemother 2004; 48(1): 124–9

    Article  PubMed  CAS  Google Scholar 

  51. Deeks SG, Barditch-Crovo P, Lietman PS, et al. Safety, pharmacokinetics, and antiretroviral activity of intravenous 9-[2-(R)-(Phosphonomethoxy)propyl]adenine, a novel antihuman immunodeficiency virus (HIV) therapy, in HIV-infected adults. Antimicrob Agents Chemother 1998; 42(9): 2380–4

    PubMed  CAS  Google Scholar 

  52. Smith PF, DiCenzo R, Morse GD. Clinical pharmacokinetics of non-nucleoside reverse transcriptase inhibitors. Clin Pharmacokinet 2001; 40(12): 893–905

    Article  PubMed  CAS  Google Scholar 

  53. Luzuriaga K, Bryson Y, McSherry G, et al. Pharmacokinetics, safety, and activity of nevirapine in human immunodeficiency virus type 1-infected children. J Infect Dis 1996; 174(4): 713–21

    Article  PubMed  CAS  Google Scholar 

  54. Mirochnick M, Fenton T, Gagnier P, et al. Pharmacokinetics of nevirapine in human immunodeficiency virus type 1-infected pregnant women and their neonates. Pediatric AIDS Clinical Trials Group Protocol 250 Team. J Infect Dis 1998; 178(2): 368–74

    Article  PubMed  CAS  Google Scholar 

  55. Mirochnick M, Siminski S, Fenton T, et al. Nevirapine pharmacokinetics in pregnant women and in their infants after in utero exposure. Pediatr Infect Dis J 2001; 20(8): 803–5

    Article  PubMed  CAS  Google Scholar 

  56. Starr SE, Fletcher CV, Spector SA, et al. Combination therapy with efavirenz, nelfinavir, and nucleoside reverse-transcriptase inhibitors in children infected with human immunodeficiency virus type 1. Pediatric AIDS Clinical Trials Group 382 Team. N Engl J Med 1999; 341(25): 1874–81

    Article  PubMed  CAS  Google Scholar 

  57. Starr SE, Fletcher CV, Spector SA, et al. Efavirenz liquid formulation in human immunodeficiency virus-infected children. Pediatr Infect Dis J 2002; 21(7): 659–63

    Article  PubMed  Google Scholar 

  58. Marzolini C, Telenti A, Decosterd LA, et al. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS 2001; 15(1): 71–5

    Article  PubMed  CAS  Google Scholar 

  59. Roberts NA, Martin JA, Kinchington D, et al. Rational design of peptide-based HIV proteinase inhibitors. Science 1990; 248(4953): 358–61

    Article  PubMed  CAS  Google Scholar 

  60. Acosta EP, Kakuda TN, Brundage RC, et al. Pharmacodynamics of human immunodeficiency virus type 1 protease inhibitors. Clin Infect Dis 2000; 30 Suppl. 2: S151–93

    Article  PubMed  CAS  Google Scholar 

  61. Mueller BU, Sleasman J, Nelon Jr RP, et al. A phase I/II study of the protease inhibitor indinavir in children with HIV infection. Pediatrics 1998; 102 (1 Pt 1): 101–9

    Article  PubMed  CAS  Google Scholar 

  62. Kline MW, Fletcher CV, Harris AT, et al. A pilot study of combination therapy with indinavir, stavudine (d4T), and didanosine (ddI) in children infected with the human immunodeficiency virus. J Pediatr 1998; 132 (3 Pt 1): 543–6

    Article  PubMed  CAS  Google Scholar 

  63. Gatti G, Vigano A, Sala N, et al. Indinavir pharmacokinetics and parmacodynamics in children with human immunodeficiency virus infection. Antimicrob Agents Chemother 2000; 44(3): 752–5

    Article  PubMed  CAS  Google Scholar 

  64. Burger DM, van Rossum AM, Hugen PW, et al. Pharmacokinetics of the protease inhibitor indinavir in human immunodeficiency virus type 1-infected children. Antimicrob Agents Chemother 2001; 45(3): 701–5

    Article  PubMed  CAS  Google Scholar 

  65. Fraaij PL, Bergshoeff AS, Van Rossum AM, et al. Changes in indinavir exposure over time: a case study in six HIV-1-infected children. J Antimicrob Chemother 2003; 52(4): 727–30

    Article  PubMed  CAS  Google Scholar 

  66. van Rossum AM, de Groot R, Hartwig NG, et al. Pharmacokinetics of indinavir and low-dose ritonavir in children with HIV-1 infection. AIDS 2000; 14(14): 2209–10

    Article  PubMed  Google Scholar 

  67. Krogstad P, Wiznia A, Luzuriaga K, et al. Treatment of human immunodeficiency virus 1-infected infants and children with the protease inhibitor nelfinavir mesylate. Clin Infect Dis 1999; 28(5): 1109–18

    Article  PubMed  CAS  Google Scholar 

  68. Bergshoeff AS, Fraaij PL, van Rossum AM, et al. Pharmacokinetics of nelfinavir in children: influencing factors and dose implications. Antivir Ther 2003; 8(3): 215–22

    PubMed  CAS  Google Scholar 

  69. Litalien C, Faye A, Compagnucci A, et al. Pharmacokinetics of nelfinavir and its active metabolite, hydroxy-tert-butylamide, in infants perinatally infected with human immunodeficiency virus type 1. Pediatr Infect Dis J 2003; 22(1): 48–55

    Article  PubMed  Google Scholar 

  70. Schuster T, Linde R, Wintergerst U, et al. Nelfinavir pharmacokinetics in HIV-infected children: a comparison of twice daily and three times daily dosing. AIDS 2000; 14(10): 1466–8

    Article  PubMed  CAS  Google Scholar 

  71. van Heeswijk RP, Scherpbier HJ, de Koning LA, et al. The pharmacokinetics of nelfinavir in HIV-1-infected children. Ther Drug Monit 2002; 24(4): 487–91

    Article  PubMed  Google Scholar 

  72. Gatti G, Castelli-Gattinara G, Cruciani M, et al. Pharmacokinetics and pharmacodynamics of nelfinavir administered twice or thrice daily to human immunodeficiency virus type 1 -infected children. Clin Infect Dis 2003; 36(11): 1476–82

    Article  PubMed  CAS  Google Scholar 

  73. Durant J, Clevenbergh P, Garraffo R, et al. Importance of protease inhibitor plasma levels in HIV-infected patients treated with genotypic-guided therapy: pharmacological data from the Viradapt Study. AIDS 2000; 14(10): 1333–9

    Article  PubMed  CAS  Google Scholar 

  74. Burger DM, Hugen PW, Aarnoutse RE, et al. Treatment failure of nelfinavir-containing triple therapy can largely be explained by low nelfinavir plasma concentrations. Ther Drug Monit 2003; 25(1): 73–80

    Article  PubMed  CAS  Google Scholar 

  75. Burger D, Hugen P, Reiss P, et al. Therapeutic drug monitoring of nelfinavir and indinavir in treatment-naive HIV-1-infected individuals. AIDS 2003; 17(8): 1157–65

    Article  PubMed  CAS  Google Scholar 

  76. Mueller BU, Nelson RP, Sleasman J, et al. A phase I/II study of the protease inhibitor ritonavir in children with human immunodeficiency virus infection. Pediatrics 1998 Mar; 101 (3 Pt 1): 335–43

    Article  PubMed  CAS  Google Scholar 

  77. Dumon C, Solas C, Thuret I, et al. Relationship between efficacy, tolerance, and plasma drug concentration of ritonavir in children with advanced HIV infection. Ther Drug Monit 2000; 22(4): 402–8

    Article  PubMed  CAS  Google Scholar 

  78. Grub S, Delora P, Ludin E, et al. Pharmacokinetics and pharmacodynamics of saquinavir in pediatric patients with human immunodeficiency virus infection. Clin Pharmacol Ther 2002; 71(3): 122–30

    Article  PubMed  CAS  Google Scholar 

  79. King JR, Kimberlin DW, Aldrovandi GM, et al. Antiretroviral pharmacokinetics in the paediatric population: a review. Clin Pharmacokinet 2002; 41(14): 1115–33

    Article  PubMed  CAS  Google Scholar 

  80. Scott T, Garris C, Rogers M, et al. Safety profile and tolerability of amprenavir in patients enrolled in an early access program. Clin Ther 2001; 23(2): 252–9

    Article  PubMed  CAS  Google Scholar 

  81. Wintergerst U, Engelhorn C, Kurowski M, et al. Pharmacokinetic interaction of amprenavir in combination with efavirenz or delavirdine in HIV-infected children. AIDS 2000; 14(12): 1866–8

    Article  PubMed  CAS  Google Scholar 

  82. Saez-Llorens X, Violari A, Deetz CO, et al. Forty-eight-week evaluation of lopinavir/ritonavir, a new protease inhibitor, in human immunodeficiency virus-infected children. Pediatr Infect Dis J 2003; 22(3): 216–24

    PubMed  Google Scholar 

  83. Church JA, Cunningham C, Hughes M, et al. Safety and antiretroviral activity of chronic subcutaneous administration of T-20 in human immunodeficiency virus 1-infected children. Pediatr Infect Dis J 2002 Jul; 21(7): 653–9

    Article  PubMed  Google Scholar 

  84. van Rossum AM, Dieleman JP, Fraaij PL, et al. Persistent sterile leukocyturia is associated with impaired renal function in human immunodeficiency virus type 1-infected children treated with indinavir. Pediatrics 2002; 110 (2 Pt 1): E19

    Article  PubMed  Google Scholar 

  85. Back D, Gatti G, Fletcher C, et al. Therapeutic drug monitoring in HIV infection: current status and future directions. AIDS 2002; 16 Suppl. 1: S5–37

    Article  PubMed  CAS  Google Scholar 

  86. Fraaij PL, Rakhmanina N, Burger DM, et al. Therapeutic drug monitoring in children with HIV/AIDS. Ther Drug Monit 2004; 26: 122–6

    Article  PubMed  Google Scholar 

  87. Burger DM, Aarnoutse RE, Hugen PW. Pros and cons of therapeutic drug monitoring of antiretroviral agents. Curr Opin Infect Dis 2002; 15(1): 17–22

    Article  PubMed  Google Scholar 

  88. Acosta EP, Gerber JG. Position paper on therapeutic drug monitoring of antiretroviral agents. AIDS Res Hum Retroviruses 2002; 18(12): 825–34

    Article  PubMed  CAS  Google Scholar 

  89. Deeks SG. Treatment of antiretroviral-drug-resistant HIV-1 infection. Lancet 2003; 362(9400): 2002–11

    Article  PubMed  CAS  Google Scholar 

  90. Aarnoutse RE, Schapiro JM, Boucher CA, et al. Therapeutic drug monitoring: an aid to optimising response to antiretroviral drugs? Drugs 2003; 63(8): 741–53

    Article  PubMed  CAS  Google Scholar 

  91. Marcelin AG, Lamotte C, Delaugerre C, et al. Genotypic inhibitory quotient as predictor of virological response to ritonaviramprenavir in human immunodeficiency virus type 1 protease inhibitor-experienced patients. Antimicrob Agents Chemother 2003; 47(2): 594–600

    Article  PubMed  CAS  Google Scholar 

  92. Shulman N, Zolopa A, Havlir D, et al. Virtual inhibitory quotient predicts response to ritonavir boosting of indinavir-based therapy in human immunodeficiency virus-infected patients with ongoing viremia. Antimicrob Agents Chemother 2002; 46(12): 3907–16

    Article  PubMed  CAS  Google Scholar 

  93. Duval X, Lamotte C, Race E, et al. Amprenavir inhibitory quotient and virological response in human immunodeficiency virus-infected patients on an amprenavir-containing salvage regimen without or with ritonavir. Antimicrob Agents Chemother 2002; 46(2): 570–4

    Article  PubMed  CAS  Google Scholar 

  94. Hsu A, Isaacson J, Brun S, et al. Pharmacokinetic-pharmacodynamic analysis of lopinavir-ritonavir in combination with efavirenz and two nucleoside reverse transcriptase inhibitors in extensively pretreated human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 2003; 47(1): 350–9

    Article  PubMed  CAS  Google Scholar 

  95. Casado JL, Moreno A, Sabido R, et al. Individualizing salvage regimens: the inhibitory quotient (Ctrough/IC50) as predictor of virological response. AIDS 2003; 17(2): 262–4

    Article  PubMed  Google Scholar 

  96. Gonzalez de Requena D, Gallego O, Valer L, et al. Prediction of virological response to lopinavir/ritonavir using the genotypic inhibitory quotient. AIDS Res Hum Retroviruses 2004; 20(3): 275–8

    Article  PubMed  Google Scholar 

  97. Back DJ, Khoo SH. The role of clinical pharmacology in optimizing antiretroviral therapy. Br J Clin Pharmacol 2003; 55(5): 473–6

    Article  PubMed  CAS  Google Scholar 

  98. Fellay J, Marzolini C, Meaden ER, et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet 2002; 359(9300): 30–6

    Article  PubMed  CAS  Google Scholar 

  99. Nasi M, Borghi V, Pinti M, et al. MDR1 C3435T genetic polymorphism does not influence the response to antiretroviral therapy in drug-naive HIV-positive patients. AIDS 2003; 17(11): 1696–8

    Article  PubMed  Google Scholar 

  100. Haas DW, Wu H, Li H, et al. MDRl gene polymorphisms and phase 1 viral decay during HIV-1 infection: an adult AIDS Clinical Trials Group study. J Acquir Immune Defic Syndr 2003; 34(3): 295–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors have participated in studies that were financially supported by Merck Sharp & Dohme Inc., GlaxoSmithKline and Abbott Laboratories. J.A. van Kampen is currently receiving financial support from Aids Fonds, The Netherlands (project number 2004051). The previously mentioned sponsors were not involved in data collection, data analysis, the writing of this article or article submission. The authors have no other conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald de Groot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraaij, P.L.A., van Kampen, J.J.A., Burger, D.M. et al. Pharmacokinetics of Antiretroviral Therapy in HIV-1-Infected Children. Clin Pharmacokinet 44, 935–956 (2005). https://doi.org/10.2165/00003088-200544090-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200544090-00004

Keywords

Navigation