Skip to main content
Log in

Clinical Pharmacokinetics of Telithromycin, the First Ketolide Antibacterial

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Telithromycin is the first ketolide, which is a new class of antibacterial agents related to the macrolides that have structural modifications permitting dual binding to bacterial ribosomal RNA so that activity is retained against Streptococcus pneumoniae with macrolide-lincosamide-streptograminB resistance. Clinical experience in infectious patients has shown that oral telithromycin 800mg once daily for 5–10 days is effective for the treatment of community-acquired upper and lower respiratory tract infections. Absorption of telithromycin in humans is estimated to be ≥90%. Prior to entering the systemic circulation, telithromycin undergoes first-pass metabolism (mainly by the liver). Its absolute bioavailability is 57% and is unaffected by food. The volume of distribution of telithromycin after intravenous infusion is 2.9 L/kg. Telithromycin is 60–70% bound to serum proteins and has extensive diffusion into a range of target biological tissues, achieving concentrations above its minimum inhibitory concentration (MIC) against key respiratory pathogens throughout the dosing interval. After entering the systemic circulation, telithromycin is eliminated by multiple pathways (7% by biliary and/or intestinal excretion, 13% by renal excretion and 37% by hepatic metabolism).

Telithromycin is metabolised via cytochrome P450 (CYP) 3A4 and non-CYP pathways. The identified metabolites show minimal antibacterial activity compared with the parent drug. In healthy subjects receiving telithromycin 800mg once daily, the peak plasma concentration achieved is 2.27 μg/mL. Plasma concentrations of telithromycin show a biphasic decrease over time, with an initial disposition half-life of 2.9 hours and a terminal elimination half-life of approximately 10 hours after multiple dose administration. Steady-state plasma concentrations are achieved within 2–3 days of once-daily administration. Owing to elimination by multiple pathways there is a small increase in exposure when one of these elimination pathways is impaired, as indicated by the results of studies in special patient populations (e.g. those with hepatic or renal impairment). Dosage reductions may be recommended in patients with severe renal impairment. Inhibition of CYP3A4 by potent inhibitors such as itraconazole and ketoconazole results in a 54% and 95% increase in telithromycin area under the plasma concentration-time curve, respectively. The potential for telithromycin to inhibit the CYP3A4 pathway is similar to that of clarithromycin. The once-daily administration of telithromycin is likely to limit the potential for drug interactions and clinically significant increases in exposure. In phase III clinical trials, the telithromycin 800mg once-daily dose has been shown to provide close to the maximum antimicrobial activity against S. pneumoniae, Haemophilus influenzae and Staphylococcus aureus in patients with community-acquired pneumonia.

In conclusion, telithromycin has a well characterised and reproducible pharmacokinetic profile, with pharmacokinetic/pharmacodynamic relationships supporting an oral dosage regimen of 800mg once daily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III
Fig. 2
Table IV
Table V
Fig. 3
Table VI
Table VII
Table VIII

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Agouridas C, Benedetti Y, Bonnefoy A, et al. Ketolides: a new class of macrolide antibacterials: structural characteristics and biological properties of RU 004. Clin Infect Dis Ther 1997; 21: 279–85

    CAS  Google Scholar 

  2. Douthwaite S. Structure-activity relationships of ketolides vs macrolides. Clin Microbiol Infect 2001; 7 Suppl. 3: 11–7

    Article  PubMed  CAS  Google Scholar 

  3. Hansen LH, Mauvais P, Douthwaite S. The macrolide-ketolide antibiotic binding site is formed by structures of domain II and V of 23S ribosomal RNA. Mol Microbiol 1999 Jan; 31(2): 623–31

    Article  PubMed  CAS  Google Scholar 

  4. Douthwaite S, Champney S. Structures of ketolides and macrolides determine their mode of interaction with the ribosomal target site. J Antimicrob Chemother 2001 Sep; 48 Suppl. T1: 1–8

    Article  PubMed  CAS  Google Scholar 

  5. Novotny GW, Andersen NM, Douthwaite S, et al. Telithromycin interacts directly with the base of A752 in domain II of 23S ribosomal RNA, in contrast to erythromycin and Clarithromycin [abstract]. Clin Microbiol Infect 2001; 7 Suppl. 1: 76

    Google Scholar 

  6. Douthwaite S, Hansen LH, Mauvais P. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA. Mol Microbiol 2000 Apr; 36(1): 183–93

    Article  PubMed  CAS  Google Scholar 

  7. Kohno S, Hoban D, and the PROTEKT Surveillance Study Group. Comparative in vitro activity of telithromycin and β-lactam antimicrobials against bacterial pathogens from community-acquired respiratory tract infections: data from the first year of PROTEKT (1999–2000). J Chemother 2003 Aug; 15(4): 335–41

    PubMed  CAS  Google Scholar 

  8. Felmingham D. Evolving resistance patterns in communityacquired respiratory tract pathogens: first results from the PROTEKT global surveillance study. J Infect 2002 Feb; 44 Suppl. A: 3–10

    PubMed  Google Scholar 

  9. Bébéar CM, Renaudin H, Aydin MD, et al. In vitro activity of ketolides against mycoplasmas. J Antimicrob Chemother 1997 May; 39(5): 669–70

    Article  PubMed  Google Scholar 

  10. Roblin PM, Hammerschlag MR. In vitro activity of a new ketolide antibiotic, HMR 3647, against Chlamydia pneumoniae. Antimicrob Agents Chemother 1998 Jun; 42(6): 1515–6

    PubMed  CAS  Google Scholar 

  11. Edelstein PH, Edelstein MA. In vitro activity of the ketolide HMR 3647 (RU 6647) for Legionella spp., its pharmacokinetics in guinea pigs, and use of the drug to treat guinea pigs with Legionella pneumophila pneumonia. Antimicrob Agents Chemother 1999 Jan; 43(1): 90–5

    PubMed  CAS  Google Scholar 

  12. Davies TA, Dewasse BE, Jacobs MR, et al. In vitro development of resistance to telithromycin (HMR 3647), four macrolides, Clindamycin, and pristinamycin in Streptococcus pneumoniae. Antimicrob Agents Chemother 2000 Feb; 44(2): 414–7

    Article  PubMed  CAS  Google Scholar 

  13. Mauvais P, Bonnefoy A. Lack of in vitro MLSB resistance induction by the ketolide telithromycin (HMR 3647): role of the 3-keto group [abstract no. 02.10]. In: Program and Abstracts of the 5th International Conference on the Macrolides, Azalides, Streptogramins, Ketolides and Oxazolidinones. Atlanta (GA): ICMAS, Inc., and the 5th International Conference on the Macrolides, Azalides, Streptogramins, Ketolides and Oxazolidinones; 2000: 24

    Google Scholar 

  14. Vesga O, Bonnat C, Craig WA. In vivo pharmacodynamic activity of HMR 3647, a new ketolide [abstract no. F-255]. In: Abstracts of the 37th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC: American Society for Microbiology, 1997: 189

    Google Scholar 

  15. Pachot JI, Botham RP, Haegele KD, et al. Experimental estimation of the role of P-glycoprotein in the pharmacokinetic behaviour of telithromycin, a novel ketolide, in comparison with roxithromycin and other macrolides using the Caco-2 cell model. J Pharm Pharm Sci 2003 Jan–Apr; 6(1): 1–12

    PubMed  CAS  Google Scholar 

  16. Sultan E, Namour F, Mauriac C, et al. HMR 3647, a new ketolide antimicrobial, is metabolized and excreted mainly in feces in man [abstract]. J Antimicrob Chemother 1999; 44 Suppl. A: 54

    Google Scholar 

  17. Namour F, Wessels DH, Pascual MH, et al. Pharmacokinetics of the new ketolide telithromycin (HMR 3647) administered in ascending single and multiple doses. Antimicrob Agents Chemother 2001 Jan; 45(1): 170–5

    Article  PubMed  CAS  Google Scholar 

  18. Denis A, Agouridas C, Auger JM, et al. Synthesis and antibacterial activity of HMR 3647 a new ketolide highly potent against erythromycin-resistant and susceptible pathogens. Bioorg Med Chem Lett 1999 Nov 1; 9(21): 3075–80

    Article  PubMed  CAS  Google Scholar 

  19. Sultan E, Namour F. Pilot study of the pharmacokinetics of HMR 3647 after single intravenous infusion and of the oral absolute bioavailability of HMR 3647 in healthy young and elderly subjects. Avenus Pharmaceuticals Ltd, 1999. Report no. HMR 3647A/1004

  20. Perret C, Lenfant B, Weinling E, et al. Pharmacokinetics and absolute oral bioavailability of an 800mg oral dose of telithromycin in healthy young and elderly volunteers. Chemotherapy 2002 Dec; 48(5): 217–23

    Article  PubMed  CAS  Google Scholar 

  21. Bhargava V, Lenfant B, Perret C, et al. Lack of food effect on the bioavailability of a new ketolide antibacterial, telithromycin. Scand J Infect Dis 2002; 34(11): 823–6

    Article  PubMed  CAS  Google Scholar 

  22. Bree F, Combes O, Tillement JP. Study of the binding of HMR 3647 in vitro to human serum proteins and erythrocytes. Aventis Pharmaceuticals Ltd, 1997. Report no. 96/8683/CN

  23. Sultan E, Cantalloube C, Vacheron F, et al. Pharmacokinetics and safety of telithromycin in patients with hepatic impairment in comparison with those in healthy subjects after multiple oral administration of 800mg once a day for 7 days. Aventis Pharmaceuticals Ltd, 2001. Report no. HMR 3647A/1060

  24. Shi J, Montay G, Chapel S, et al. Pharmacokinetics and safety of the ketolide telithromycin in patients with renal impairment. J Clin Pharmacol 2004 Mar; 44(3): 234–44

    Article  PubMed  CAS  Google Scholar 

  25. Pham Gia H, Roeder V, Namour F, et al. HMR 3647 achieves high and sustained concentrations in white blood cells in man. J Antimicrob Chemother 1999; 44 Suppl. A: 57–8

    Google Scholar 

  26. Edlund C, Alván G, Barkholt L, et al. Pharmacokinetics and comparative effects of telithromycin (HMR 3647) and Clarithromycin on the oropharyngeal and intestinal microflora. J Antimicrob Chemother 2000 Nov; 46(5): 741–9

    Article  PubMed  CAS  Google Scholar 

  27. Gehanno P, Passot V, Nabet P, et al. Telithromycin (HMR 3647) penetrates rapidly into tonsillar tissue achieving high and prolonged tonsillar concentrations [abstract]. Clin Microbiol Infect 2000; 4 Suppl. 1: 204

    Google Scholar 

  28. Miyamoto N, Murakami S, Yajin K, et al. Pharmacokinetic and clinical studies of a new ketolide antimicrobial, telithromycin (HMR 3647), in otorhinolaryngology [abstract no. 2144]. In: Abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC: American Society for Microbiology, 2000: 83

    Google Scholar 

  29. Khair OA, Andrews JM, Honeybourne D, et al. Lung concentrations of telithromycin after oral dosing. J Antimicrob Chemother 2001 Jun; 47(6): 837–40

    Article  PubMed  CAS  Google Scholar 

  30. Muller-Serieys C, Soler P, Cantalloube C, et al. Bronchopulmonary disposition of the ketolide telithromycin (HMR 3647). Antimicrob Agents Chemother 2001 Nov; 45(11): 3104–8

    Article  PubMed  CAS  Google Scholar 

  31. Klossek JM, Serrano E, Peynegre R. Penetration of telithromycin (HMR 3647), a new ketolide, into sinus tissue in patients undergoing sinusectomy. In: Program and Abstracts of the 49th Annual Spring Meeting of the American Rhinologic Society. Bronx (NY): American Rhinologic Society, 2003

    Google Scholar 

  32. Yamaguchi T, Hirakata Y, Izumikawa K, et al. In vitro activity of telithromycin (HMR3647), a new ketolide, against clinical isolates of Mycoplasma pneumoniae in Japan. Antimicrob Agents Chemother 2000 May; 44(5): 1381–2

    Article  PubMed  CAS  Google Scholar 

  33. Hammerschlag MR, Roblin PM, Bébéar CM. Activity of telithromycin, a new ketolide antibacterial, against atypical and intracellular respiratory tract pathogens. J Antimicrob Chemother 2001 Sep; 48 Suppl. T1: 25–31

    Article  PubMed  CAS  Google Scholar 

  34. Schito GC, Marchese A, Elkharrat D, et al. Comparative activity of telithromycin against macrolide-resistant isolates of Streptococcus pneumoniae: results of two years of the PROTEKT surveillance study. J Chemother 2004 Feb; 16(1): 13–22

    PubMed  CAS  Google Scholar 

  35. Namour F, Sultan E, Pascual MH, et al. Penetration of telithromycin (HMR 3647), a new ketolide antimicrobial, into inflammatory blister fluid following oral administration. J Antimicrob Chemother 2002 Jun; 49(6): 1035–8

    Article  PubMed  CAS  Google Scholar 

  36. Wildfeuer A, Laufen H, Müller-Wenning D, et al. Interaction of azithromycin and human phagocytic cells: uptake of the antibiotic and the effect on the survival of ingested bacteria in phagocytes. Arzneimittel Forschung 1989 Jul; 39(1): 755–8

    PubMed  CAS  Google Scholar 

  37. Bonnet M, Van der Auwera P. In vitro and in vivo intra leukocytic accumulation of azithromycin (CP-62 993) and its influence on ex vivo leukocyte chemiluminescence. Antimicrob Agents Chemother 1992 Jun; 36(6): 1302–9

    Article  PubMed  CAS  Google Scholar 

  38. Conte JE, Golden JA, Duncan S, et al. Intrapulmonary pharmacokinetics of Clarithromycin and of erythromycin. Antimicrob Agents Chemother 1995 Feb; 39(2): 334–8

    Article  PubMed  CAS  Google Scholar 

  39. Fish DN, Gotfried MH, Danziger LH, et al. Penetration of Clarithromycin into lung tissues from patients undergoing lung resection. Antimicrob Agents Chemother 1994 Apr; 38(4): 876–8

    Article  PubMed  CAS  Google Scholar 

  40. Baldwin DR, Wise R, Andrews JM, et al. Azithromycin concentrations at the sites of pulmonary infection. Eur Respir J 1990 Sep; 3(8): 886–90

    PubMed  CAS  Google Scholar 

  41. Aventis Pharmaceuticals Ltd. Ketek® (telithromycin): briefing document for the FDA Anti-Infective Drug Products Advisory Committee Meeting, January 2003 [online]. Available from URL:http://www.fda.gov/ohrms/dockets/ac/03/briefing/3919-Bl_01_Aventis-KETEK.pdf [Accessed 2005 Jun 5]

  42. Rainbeaud M, Mauriac C, Chambon V, et al. In vitro biotransformation of HMR 3647 by male and female human hepatocytes. Aventis Pharmaceuticals Ltd, 1997. Report no. 97/9367/CN

  43. Scheer J, Marchandeau JP, Mauriac C, et al. Cytochrome P450 isoenzymes involved in HMR 3647 metabolism by human liver microsomes. Aventis Pharmaceuticals Ltd, 1997. Report no. 97/9792/CN

  44. Labbe G, Flor M, Lenfant B. Cytochrome P-450 (CYP-450) activity is not inhibited in vitro by telithromycin (HMR 3647), a new ketolide antimicrobial [abstract no. 09.28]. In: Program and Abstracts of the 5th International Conference on the Macrolides, Azalides, Streptogramins, Ketolides and Oxazolidinones. Atlanta (GA): ICMAS, Inc., and the 5th International Conference on the Macrolides, Azalides, Streptogramins, Ketolides and Oxazolidinones; 2000: 83

    Google Scholar 

  45. Sultan E, Wable C. Study of the pharmacokinetics of HMR 3647 in elderly male and female subjects compared to those in healthy young male subjects after single and repeated oral administration of HMR 3647 (600mg and 800mg) once a day for 10 days. Aventis Pharmaceuticals Ltd, 1999. Report no. HMR 3647A/1005

  46. Aventis Pharmaceuticals Ltd. Ketek® (telithromycin) tablets: February 2005 [online]. Available from URL: http://www.fda.gov/medwatch/SAFETY/2005/Feb.PI/Ketek.PI.pdf [Accessed 2005 Aug 4]

  47. Cantalloube C, Bhargava V, Sultan E, et al. Pharmacokinetics of the ketolide telithromycin after single and repeated doses in patients with hepatic impairment. Int J Antimicrob Agents 2003 Aug; 22(2): 112–21

    Article  PubMed  CAS  Google Scholar 

  48. Sultan E, Cantalloube C, Vacheron, et al. Pharmacokinetics and safety of telithromycin in patients with hepatic impairment in comparison with those in healthy subjects after multiple oral administration of 800mg once a day for 7 days. Aventis Pharmaceuticals Ltd, 2001. Report no. HMR 3647A/1060

  49. Shi J, Montay G, Hardy P. Pharmacokinetics and safety of telithromycin in patients with renal impairment after multiple oral administration of 400, 600 and 800mg once a day for 5 days. Aventis Pharmaceuticals Ltd, 2002. Report no. HMR 3647A/1062

  50. Hutcheson S, pack D. The effect of concomitant multiple doses of ketoconazole and HMR 3647 on pharmacokinetic and ECG measures: a four-period, open-label crossover drug-drug interaction study. Aventis Pharmaceuticals Ltd, 2000. Report no. HMR 3647/1045

  51. Shi J, Montay G, Hardy P. Effects of ketoconazole on the pharmacokinetics of telithromycin after multiple oral doses of 800mg once a day for 5 days in subjects 60 years of age and older with diminished renal function. Aventis Pharmaceuticals Ltd, 2002. Report no. HMR 3647A/1063

  52. Dowling TC, Briglia AE, Fink JC, et al. Characterization of hepatic cytochrome P4503A activity in patients with end-stage renal disease. Clin Pharmacol Ther 2003 May; 73(5): 427–34

    Article  PubMed  CAS  Google Scholar 

  53. Bjornsson TD, Callaghan JT, Einolf HJ, et al. The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab Dispos 2003 Jul; 31(7): 815–32

    Article  PubMed  CAS  Google Scholar 

  54. Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994 May; 55(5): 481–5

    Article  PubMed  CAS  Google Scholar 

  55. Shi J, Montay G, Leroy B, et al. Effects of ketoconazole and itraconazole on the pharmacokinetics of telithromycin, a new ketolide antibiotic [abstract no. A1833]. In: Abstracts of the 38th International Conference on Antimicrobial Agents and Chemotherapy. San Diego (CA): American Society for Microbiology, 2002: 28

    Google Scholar 

  56. Honig PK, Wortham DC, Zamani K, et al. Terfenadineketoconazole interaction: pharmacokinetic and electrocardiographic consequences [published erratum appears in JAMA 1993 Apr 28; 269 (16): 2088]. JAMA 1993 Mar 24–31; 269(12): 1513–8

    Article  PubMed  CAS  Google Scholar 

  57. Propulsid® (cisapride). Physician’s Desk Reference. 53rd ed. Montvale (NJ): Medical Economics Company, 1999: 1430-2

  58. Scidane® (terfenadine). Physician’s Desk Reference. 51st ed. Montvale (NJ): Medical Economics Company, 1997: 1284

  59. Cantalloube C, Selmani A. An open, randomized, crossover study to assess the effect of multiple oral doses of telithromycin (800mg qd) on the pharmacokinetics of midazolam, after single intravenous infusion or single oral dose, in healthy male subjects. Aventis Pharmaceuticals Ltd, 2000. Report no. HMR 3647A/1056

  60. Shi J, Chapel S, Montay G, et al. Effect of ketoconazole on the pharmacokinetics and safety of telithromycin and Clarithromycin in older subjects with renal impairment. Int J Clin Pharmacol Ther 2005; 43(3): 123–33

    PubMed  CAS  Google Scholar 

  61. Shi J, Pfister M, Jenkins SG, et al. Pharmacodynamic analysis of the microbiologic efficacy of telithromycin in patients with community-acquired pneumonia. Clin Pharmacokinet. In press

  62. Reyneke G, Sultan E, Perret C, et al. Pharmacokinetics of the ketolide telithromycin (HMR 3647) in adolescent patients with respiratory tract infections [abstract]. Int J Antimicrob Agents 2001; 17 Suppl. 1: S36

    Google Scholar 

  63. Shi J, Montay G, Leroy B, et al. Effects of itraconazole or grapefruit juice on the pharmacokinetics of telithromycin. Pharmacotherapy 2005; 25(1): 42–51

    Article  PubMed  CAS  Google Scholar 

  64. Sultan E, Perret C. An open, crossover study to assess the effect of multiple doses of rifampicin (600mg OAD) on the single dose and multiple dose pharmacokinetics of telithromycin (800mg OAD) in healthy male subjects. Aventis Pharmaceuticals Ltd, 2001. Report no. HMR 3647A/1058

  65. Vakily M, Pack D. An open-label, randomised crossover study to determine the effect of intra-gastric pH altering agents ranitidine (Zantacb and Maaloxb on the pharmacokinetics of HMR 3647 in healthy male subjects. Aventis Pharmaceuticals Ltd, 1999. Report no. HMR 3647A/1020

  66. Sultan E, Potgieter MA. A study investigating a potential pharmacokinetic interaction between HMR 3647 and simvastatin in healthy male subjects. Aventis Pharmaceuticals Ltd, 2000. Report no. HMR 3647A/1048

  67. Lippert C, Pack D. A pharmacokinetic interaction study between HMR 3647 and cisapride in healthy subjects. Aventis Pharmaceuticals Ltd, 1999. Report no. HMR 3647A/1041

  68. Lippert C, Pack D. An open-label, randomized two-period crossover, multiple-dose pharmacokinetic interaction study of 800mg HMR 3647 daily orally and 30mg paroxetine daily orally in healthy adult males. Aventis Pharmaceuticals Ltd, 1999. Report no. HMR 3647A/1022

  69. Namour F, Chevalier P, Guimart C, et al. An open interaction study between multiple oral doses of telithromycin (800mg qd) and single oral dose of metoprolol (100mg) in healthy volunteers. Aventis Pharmaceuticals Ltd, 2002. Report no. HMR 3647A/1061

  70. Bonate P, Pack D. Effects of HMR 3647 on the pharmacokinetics of theophylline in healthy male and female subjects. Aventis Pharmaceuticals Ltd, 1999. Report no. HMR 3647A/1011

  71. Sultan E, van Niekerk N. A study investigating a potential pharmacodynamic and pharmacokinetic interaction of HMR 3647 with racemic warfarin in healthy male subjects. Aventis Pharmaceuticals Ltd, 1999. Report no. HMR 3647A/1012

  72. Namour F, Sultan E. A study of the potential effects of HMR 3647 on the pharmacokinetics of digoxin in healthy male subjects. Aventis Pharmaceuticals Ltd, 1999. Report no. HMR 3647A/1013

  73. Vacheron F, Selmani A, Cantalloube C. Assessment of the possible effect of a single oral dose (800mg) of HMR 3647 on sotalol-induced prolongation of ventricular repolarisation after a single oral dose (160mg) in healthy female subjects. Aventis Pharmaceuticals Ltd, 2001. Report no. HMR 3647A/1057

  74. Sultan E, van Niekerk N. A study of the potential pharmacodynamic and pharmacokinetic interaction of HMR 3647 with low dose triphasic oral contraceptive (ethinylestradiol/levonorgestrel) in healthy female subjects. Aventis Pharmaceuticals Ltd, 1999. Report no. HMR 3647A/1042

  75. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38(1): 41–57

    Article  PubMed  CAS  Google Scholar 

  76. Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately upregulate these proteins in human colon carcinoma cells. Mol Pharmacol 1996 Feb; 49(2): 311–8

    PubMed  CAS  Google Scholar 

  77. Fromm MF, Kauffmann HM, Fritz P, et al. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am J Pathol 2000 Nov; 157(5): 1575–80

    Article  PubMed  CAS  Google Scholar 

  78. Combalbert J, Fabre I, Fabre G, et al. Metabolism of cyclosporin A: IV. Purification and identification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily. Drug Metab Dispos 1989 Mar–Apr; 17(2): 197–207

    PubMed  CAS  Google Scholar 

  79. Gorski JC, Jones DR, Haehner-Daniels BD, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and Clarithromycin. Clin Pharmacol Ther 1998 Aug; 64(2): 133–43

    Article  PubMed  CAS  Google Scholar 

  80. Tsunoda SM, Velez RL, von Moltke LL, et al. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 1999 Nov; 66(5): 461–71

    Article  PubMed  CAS  Google Scholar 

  81. van Haarst AD, van’t Klooster GA, van Gerven JM, et al. The influence of cisapride and Clarithromycin on QT intervals in healthy volunteers. Clin Pharmacol Ther 1998 Nov; 64(5): 542–6

    Article  PubMed  Google Scholar 

  82. Lilja JJ, Kivisto KT, Neuvonen PJ. Grapefruit juice-simvastatin interaction: effect on serum concentrations of simvastatin, simvastatin acid and HMG-CoA reductase inhibitors. Clin Pharmacol Ther 1998 Nov; 64(5): 477–83

    Article  PubMed  CAS  Google Scholar 

  83. Neuvonen PJ, Kantola T, Kivisto KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998 Mar; 63(3): 332–41

    Article  PubMed  CAS  Google Scholar 

  84. Chevalier P, Guimart C, Boudraa Y, et al. An open study investigating the pharmacokinetic interaction of Clarithromycin on simvastatin in healthy male subjects. Aventis Pharmaceuticals Ltd, 2002. Report no. HMR 3647A/1067

  85. Chevalier P, Guimart C, Boudraa Y, et al. An open, randomised, crossover study investigating the effect of dosing interval on pharmacokinetic interaction of telithromycin on simvastatin in healthy male subjects. Aventis Pharmaceuticals Ltd, 2002. Report no. HMR 3647A/1065

  86. Bhargava V, Leroy B, Shi J, et al. Effect of telithromycin on pharmacokinetics of theophylline in healthy volunteers [abstract no. A-1832]. In: Abstracts of the 42nd International Conference on Antimicrobial Agents and Chemotherapy. San Diego (CA): American Society for Microbiology, 2002: 28

    Google Scholar 

  87. Scholtz HE, Pretorius SG, Wessels DH, et al. Telithromycin (HMR 3647), a new ketolide antimicrobial, does not affect the pharmacodynamics or pharmacokinetics of warfarin [abstract no. 09.30]. In: Program and Abstracts of the 5th International Conference on the Macrolides, Azalides, Streptogramins, Ketolides and Oxazolidinones. Atlanta (GA): ICMAS, Inc., and the 5th International Conference on the Macrolides, Azalides, Streptogramins, Ketolides and Oxazolidinones; 2000: 84

    Google Scholar 

  88. Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999 Jul; 104(2): 147–53

    Article  PubMed  CAS  Google Scholar 

  89. Rengelshausen J, Goggelmann C, Burhenne J, et al. Contribution of increased oral bioavailability and reduced nonglomerular renal clearance of digoxin to the digoxin-clarithromycin interaction. Br J Clin Pharmacol 2003 Jul; 56(1): 32–8

    Article  PubMed  CAS  Google Scholar 

  90. Wakasugi H, Yano I, Ito T, et al. Effect of Clarithromycin on renal excretion of digoxin: interaction with P-glycoprotein. Clin Pharmacol Ther 1998 Jul; 64(1): 123–8

    Article  PubMed  CAS  Google Scholar 

  91. Lindenbaum J, Rund DG, Butler Jr VP, et al. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med 1981 Oct 1; 305(14): 789–94

    Article  PubMed  CAS  Google Scholar 

  92. Montay G, Shi J, Leroy B, et al. Effects of telithromycin on the pharmacokinetics of digoxin in healthy men [abstract no. A-1834]. In: Abstracts of the 42nd International Conference on Antimicrobial Agents and Chemotherapy. San Diego (CA): American Society for Microbiology, 2002: 28

    Google Scholar 

  93. Scholtz HE, Sultan E, Wessels D, et al. Telithromycin (HMR 3647), a new ketolide antimicrobial, does not affect the reliability of low-dose, triphasic oral contraceptives [abstract no. 09.29]. In: Program and Abstracts of the 5th International Conference on the Macrolides, Azalides, Streptogramins, Ketolides and Oxazolidinones. Atlanta (GA): ICMAS, Inc., and the 5th International Conference on the Macrolides, Azalides, Streptogramins, Ketolides and Oxazolidinones; 2000: 84

    Google Scholar 

  94. Amsden GW. Erythromycin, Clarithromycin, and azithromycin: are the differences real? Clin Ther 1996 Jan–Feb; 18(1): 56–72

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This review was sponsored by Sanofi-Aventis. The authors were employed by Sanofi-Aventis at the time of writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Montay, G. & Bhargava, V.O. Clinical Pharmacokinetics of Telithromycin, the First Ketolide Antibacterial. Clin Pharmacokinet 44, 915–934 (2005). https://doi.org/10.2165/00003088-200544090-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200544090-00003

Keywords

Navigation