Skip to main content
Log in

Individualising Aminoglycoside Dosage Regimens after Therapeutic Drug Monitoring

Simple or Complex Pharmacokinetic Methods?

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Measurements of aminoglycoside concentration in serum are used to individualise dosage regimens (dose per administration and/or administration interval) with the goal of attaining the desired therapeutic range as quickly as possible. Therapeutic range is defined in terms of peak concentration (to monitor effectiveness) and trough concentration (to avoid toxicity). This article focuses on methods to individualise aminoglycoside dosage regimens in the context of extended dosage intervals.

Simple pharmacokinetic methods involve linear dosage adjustment based on peak or trough concentrations or area under the concentration-time curve, or nomograms. The once daily aminoglycoside nomogram determines the dosage interval for aminoglycosides given as a fixed dose per administration, based on a single concentration measurement drawn 6 to 14 hours after the start of the first infusion. This is a preferred method because of its simplicity, strong pharmacodynamic rationale and prospective validation in a large population. However, it does not work when the fixed dose assumed is not relevant, for example for patients with burns, cystic fibrosis, ascites or pregnancy. Furthermore, it has not been validated in children. In these cases, a more sophisticated method is required.

Complex pharmacokinetic methods require dedicated software. Non-Bayesian least-squares methods allow the optimisation of both the dose and the dosage interval, but require aminoglycoside concentrations from two or more samples taken in the post-distributive phase during a single dosage interval. With Bayesian least-squares methods, only one concentration measurement is required, although any number of samples can be taken into account. In the Bayesian maximum a posteriori (MAP) method, the parameter estimates are taken as the values corresponding to the maximum of the posterior density. In ‘full’ Bayesian approaches (also called stochastic control), all the information about the parameters revealed by the posterior distribution is taken into account, and the optimal regimen is found by minimising the expected value of the weighted sum of squared deviations between predicted and target concentrations.

If the population model is reasonably well known, Bayesian methods (MAP or stochastic control) should be used because of their good predictive performance. Although only one concentration measurement is required, better precision is afforded by a two-sample strategy, preferably drawn 1 and 6 hours after the start of the first infusion. If the population model is not known, then the non-Bayesian least-squares method is the method of choice, because of its robustness and lack of requirement for prior information about the distribution of parameters in the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table I

Similar content being viewed by others

References

  1. Zaske DE, Cipolle RJ, Rotschafer JC, et al. Gentamicin pharmacokinetics in 1640 patients: method for control of serum concentrations. Antimicrob Agents Chemother 1982; 21: 407–11

    Article  PubMed  CAS  Google Scholar 

  2. Zaske DE, Irvine P, Strand LM, et al. Wide interpatient variations in gentamicin dose requirements for geriatric patients. JAMA 1982; 248: 3122–6

    Article  PubMed  CAS  Google Scholar 

  3. Rodvold KA, Zokufa H, Rotschafer JC. Aminoglycoside pharmacokinetic monitoring: an integral part of patient care? Clin Pharm 1988; 7: 608–13

    PubMed  CAS  Google Scholar 

  4. Lacy MK, Nicolau DP. The pharmacodynamics of aminoglycosides. Clin Infect Dis 1998; 27: 23–7

    Article  PubMed  CAS  Google Scholar 

  5. McCormack JP, Jeweson PJ. A critical reevaluation of the ‘therapeutic range’ of aminoglycosides. Clin Infect Dis 1992; 14: 320–39

    Article  PubMed  CAS  Google Scholar 

  6. Burton ME, Ash CL, Hill DP, et al. A controlled trial of the cost benefit of computerized Bayesian aminoglycoside administration. Clin Pharmacol Ther 1991; 49: 685–94

    Article  PubMed  CAS  Google Scholar 

  7. Nicolau DP, Freeman CD, Belliveau PP, et al. Experience with once-daily aminoglycoside program administered to 2184 adult patients. Antimicrob Agents Chemother 1995; 39: 650–5

    Article  PubMed  CAS  Google Scholar 

  8. Streetman DS, Nafziger AN, Destache CJ, et al. Individualized pharmacokinetic monitoring results in less aminoglycoside-associated nephrotoxicity [abstract A79]. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 24–27; San Diego

  9. Anaizi N. Once-daily dosing of aminoglycosides: a consensus document. Int J Clin Pharmacol Ther 1997; 35: 223–6

    PubMed  CAS  Google Scholar 

  10. Morris RG, Sallustio BC, Vinks AT, et al. Some international approaches to aminoglycoside monitoring in the extended dosing interval era. Ther Drug Monit 1999; 21: 379–88

    Article  PubMed  CAS  Google Scholar 

  11. Bertino JS, Rodvold KA, Destache CJ. Cost considerations in therapeutic drug monitoring of aminoglycosides. Clin Pharmacokinet 1994; 26: 71–81

    Article  PubMed  Google Scholar 

  12. Rybak MJ, Abate BJ, Kang SL, et al. Prospective evaluation of the effects of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob Agents Chemother 1999; 43: 1549–55

    PubMed  CAS  Google Scholar 

  13. Barclay ML, Kirckpatrick CMJ, Begg EJ. Once daily aminoglycoside therapy: is it less toxic than multiple daily doses and how should it be monitored? Clin Pharmacokinet 1999; 36: 89–98

    Article  PubMed  CAS  Google Scholar 

  14. Tod M, Padoin C, Petitjean O. Clinical pharmacokinetics and pharmacokinetics of isepamicin. Clin Pharmacokinet 2000; 38: 205–23

    Article  PubMed  CAS  Google Scholar 

  15. Dager WE. Aminoglycoside pharmacokinetics: volume of distribution in specific adult patient subgroups. Ann Pharmacother 1994; 28: 944–51

    PubMed  CAS  Google Scholar 

  16. Dasta JF, Armstrong DB. Variability in aminoglycoside pharmacokinetics in critically ill surgical patients. Crit Care Med 1988; 16: 327–30

    Article  PubMed  CAS  Google Scholar 

  17. Marick PA. Aminoglycoside volume of distribution and illness severity in critically ill septic patients. Anaesth Intensive Care 1993; 21: 172–3

    Google Scholar 

  18. Reed RL, Ericsson CD, Wu A, et al. The pharmacokinetics of prophylactic antibiotics in trauma. J Trauma 1992; 32: 21–7

    Article  PubMed  Google Scholar 

  19. Prins JM, Weverling GJ, de Blok K, et al. Validation and nephrotoxicity of a simplified once-daily aminoglycoside dosing schedule and guidelines for monitoring therapy. Antimicrob Agents Chemother 1996; 40: 2494–9

    PubMed  CAS  Google Scholar 

  20. Begg EJ, Barclay ML, Duffull SB. A suggested approach to once-daily aminoglycoside dosing. Br J Clin Pharmacol 1995; 39: 605–9

    Article  PubMed  CAS  Google Scholar 

  21. Xiong YQ, Caillon J, Kergueris MF, et al. Adaptive resistance of Pseudomonas aeruginosa induced by aminoglycosides and killing kinetics in a rabbit endocarditis model. Antimicrob Agents Chemother 1997; 41: 823–6

    PubMed  CAS  Google Scholar 

  22. Hyatt JM, McKinnon PS, Zimmer GS, et al. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome. Clin Pharmacokinet 1995; 28: 143–60

    Article  PubMed  CAS  Google Scholar 

  23. Barclay ML, Duffull SB, Begg EJ, et al. Experience of once-daily aminoglycoside dosing using a target area under the concentration-time curve. Aust N Z J Med 1995; 25: 230–5

    Article  PubMed  CAS  Google Scholar 

  24. El Bakri F, Pallett A, Smith AG, et al. Ototoxicity induced by once-daily gentamicin. Lancet 1998; 351: 1407–8

    Article  PubMed  CAS  Google Scholar 

  25. Tod M, Minozzi C, Beaucaire G, et al. Isepamicin in intensive care unit patients with nosocomial pneumonia: population pharmacokinetic-pharmacodynamic study. J Antimicrob Chemother 1999; 44: 99–108

    Article  PubMed  CAS  Google Scholar 

  26. Cometta A, Zinner S, de Bock R, et al. Piperacillin-tazobactam plus amikacin versus ceftazidime plus amikacin as empiric therapy for fever in granulocytopenic patients with cancer. Antimicrob Agents Chemother 1995; 39: 445–52

    Article  PubMed  CAS  Google Scholar 

  27. Zeitany RG, el Saghir NS, Santosh-Kumar CR, et al. Increased aminoglycoside dosage requirements in hematologic malignancy. Antimicrob Agents Chemother 1990; 34: 702–8

    Article  PubMed  CAS  Google Scholar 

  28. Anaizi N. Once-daily dosing of aminoglycosides: a consensus document. Available from URL: http://www.boomer.org/pkin/consensus/Odacd.html [Accessed 2001 Sep 26]

  29. Sawchuk RJ, Zaske DE. Pharmacokinetics of dosing regimens which utilize multiple intravenous infusions: gentamicin in burn patients. J. Pharmacokinet Biopharm 1976; 4: 183–95

    CAS  Google Scholar 

  30. Buffington DE, Lampasona V, Chandler HH. Computers in pharmacokinetics: choosing software for clinical decision making. Clin Pharmacokinet 1993; 25: 205–16

    Article  PubMed  CAS  Google Scholar 

  31. Jelliffe RW, Iglesias T, Hurst AK, et al. Individualising gentamicin dosage regimens: a comparative review of selected models, data fitting methods and monitoring strategies. Clin Pharmacokinet 1991; 21: 461–78

    Article  PubMed  CAS  Google Scholar 

  32. Kosirog JL, Rospond RM, Destache C, et al. Aminoglycoside forecasting in neutropenic patients with cancer. Clin Pharmacokinet 1993; 24: 79–87

    Article  PubMed  CAS  Google Scholar 

  33. Lui K, Bryson SM, Irwin DB, et al. Evaluation of Bayesian forecasting for individualized gentamicin dosage in infants weighing 1000 g or less. Am J Dis Child 1991; 145: 463–7

    PubMed  CAS  Google Scholar 

  34. McClellan SD, Farringer JA. Bayesian forecasting of aminoglycoside dosing requirements in obese patients: influence of subpopulation versus general population pharmacokinetic parameters as the internal estimates. Ther Drug Monit 1989; 11: 431–6

    PubMed  CAS  Google Scholar 

  35. Katz D, d’Argenio DZ. Implementation and evaluation of control strategies for individualizing dosage regimens, with application to aminoglycoside antibiotics. J Pharmacokinet Biopharm 1986; 14: 523–37

    PubMed  CAS  Google Scholar 

  36. Jelliffe RW, Bayard D, Milman M, et al. Achieving target goals most precisely using non parametric compartmental models and multiple model design of dosage regimens. Ther Drug Monit 2000; 22: 346–53

    Article  PubMed  CAS  Google Scholar 

  37. Tod M, Alet P, Lortholary O, et al. Implementation and evaluation of a stochastic control strategy for individualizing teicoplanin dosage regimen. J Pharmacokinet Biopharm; 1997; 25: 695–712

    PubMed  CAS  Google Scholar 

  38. Erb RJ. The back propagation neural network — a Bayesian classifier: introduction and applicability to pharmacokinetics. Clin Pharmacokinet 1995; 29: 69–79

    Article  PubMed  CAS  Google Scholar 

  39. Brier ME, Furada JM, Aronoff GR. Neural network predicted peak and trough gentamicin concentrations. Pharm Res 1995; 12: 406–12

    Article  PubMed  CAS  Google Scholar 

  40. Jelliffe RW, Schumitzky A, Van Guilder M. Nonpharmacokinetic clinical factors affecting aminoglycoside therapeutic precision: a simulation study. Drug Invest 1992; 4: 20–9

    Article  Google Scholar 

  41. Vozeh S, Steiner C. Estimates of the population pharmacokinetic parameters and performance of Bayesian feedback: a sensitivity analysis. J Pharmacokinet Biopharm 1987; 15: 511–28

    PubMed  CAS  Google Scholar 

  42. Tanigawara Y, Yano I, Kawakatsu K, et al. Predictive performance of the Bayesian analysis: effect of blood sampling time, population parameters and pharmacostatistical model. J Pharmacokinet Biopharm 1994; 22: 59–71

    PubMed  CAS  Google Scholar 

  43. Keller F, Erdmann K, Giehl M, et al. Nonparametric meta-analysis of published data on kidney-function dependence of pharmacokinetic parameters for the aminoglycoside netilmicin. Clin Pharmacokinet 1993; 25: 71–9

    Article  PubMed  CAS  Google Scholar 

  44. Papadakis MA, Arieff AI. Unpredictability of clinical evaluation of renal function in cirrhosis. Am J Med 1987; 82: 945–52

    Article  PubMed  CAS  Google Scholar 

  45. Mohler JL, Barton SD, Blouin RA, et al. The evaluation of creatinine clearance in spinal cord injury patients. J Urol 1986; 136: 366–9

    PubMed  CAS  Google Scholar 

  46. Best NG, Spiegelhalter DJ, Thomas A, et al. Bayesian analysis of realistically complex models. J Royal Statist Soc A 1996; 159: 323–42

    Article  Google Scholar 

  47. Lortholary O, Tod M, Cohen Y, et al. Aminoglycosides: antimicrobial therapy — II. Med Clin North Am 1995; 79: 761–87

    PubMed  CAS  Google Scholar 

  48. Mendelman PM, Smith AL, Levy J, et al. Aminoglycoside penetration, inactivation and efficacy in cystic fibrosis sputum. Am Rev Respir Dis 1985; 132: 761–5

    PubMed  CAS  Google Scholar 

  49. Touw DJ, Jacobs FAH, Brimicombe RW, et al. Pharmacokinetics of aerosolized tobramycin in adult patients with cystic fibrosis. Antimicrob Agents Chemother 1997; 41: 184–7

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors declared that they had no conflict of interest in the writing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel M. Tod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tod, M.M., Padoin, C. & Petitjean, O. Individualising Aminoglycoside Dosage Regimens after Therapeutic Drug Monitoring. Clin Pharmacokinet 40, 803–814 (2001). https://doi.org/10.2165/00003088-200140110-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200140110-00002

Keywords

Navigation