Skip to main content
Log in

Metabolites of Antihypertensive Drugs

An Updated Review of Their Clinical Pharmacokinetic and Therapeutic Implications

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Many antihypertensive drugs are extensively metabolised in humans. Since some metabolites are active and may therefore contribute to the pharmacological activity of the parent drugs, knowledge of the pharmacokinetic properties of active metabolites is important for understanding the overall effects of drugs. Four categories of antihypertensive drugs with active metabolites are dealt with, with selected examples described in some detail. First, drugs with effects relying totally on active metabolites include agents such as methyldopa, cadralazine and many angiotensin converting enzyme (ACE) inhibitors. Secondly, those with effects primarily due to active metabolites include drugs such as triamterene and spironolactone. Thirdly, agents with effects primarily due to the parent drug, but with active metabolites providing significant contributions to the overall pharmacological effect, include drugs such as indoramin, alprenolol, acebutolol, diltiazem and verapamil. Lastly, agents with pharmacological effects with only minor (if any) contributions from active metabolites include drugs such as propranolol, metoprolol, carteolol and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ablad B, Borg KO, Johnsson G, Regårdh C, Solvell L. Combined pharmacokinetic and pharmacodynamic studies of alprenolol and 4-hydroxy-alprenolol in man. Life Sciences 14: 693–704, 1974

    PubMed  CAS  Google Scholar 

  • Abshagen U, Platt D, Horn HJ. Zur Pharmakokinetik von Spironolacton im Alter. Klinische Wochenschrift 59: 909–910, 1981

    PubMed  CAS  Google Scholar 

  • Althuis TH, Hess HJ. Synthesis and identification of the major metabolites of prazosin formed in dog and rat. Journal of Medicinal Chemistry 20: 146–149, 1977

    PubMed  CAS  Google Scholar 

  • Anthony L, Kashakji R, Wood AJJ. Multiple pathways of propranolol’s metabolism are inhibited by debrisoquin. Clinical Pharmacology and Therapeutics 46: 297–300, 1989

    PubMed  CAS  Google Scholar 

  • Au WYW, Dring LG, Grahame-Smith DG, Isaac P, Williams RT. The metabolism of 14C-labelled α-methyldopa in normal and hypertensive human subjects. Biochemical Journal 129: 1–10, 1972

    PubMed  CAS  Google Scholar 

  • Baba T, Murabayashi S, Tomiyama T, Takebe K. The pharmacokinetics of enalapril in patients with compensated liver cirrhosis. British Journal of Clinical Pharmacology 29: 766–769, 1990

    PubMed  CAS  Google Scholar 

  • Barnett AJ, Bobik A, Carson V, Korman JS, McLean AJ. Pharmacokinetics of methyldopa. Clinical and Experimental Pharmacology and Physiology 4: 331–339, 1977

    PubMed  CAS  Google Scholar 

  • Bobik A, Jennings G, Jackman G, Oddie C, Korner P. Evidence for a predominantly central hypotensive effect of alphamethyldopa in humans. Hypertension 8: 16–23, 1986

    PubMed  CAS  Google Scholar 

  • Borg KO, Carlsson E, Hoffman KJ, Jonsson TE, Thorin H, et al. Metabolism of metoprolol-(3H) in man, the dog and the rat. Acta Pharmacologica et Toxicologica 36 (Suppl. V): 125–135, 1975

    PubMed  CAS  Google Scholar 

  • Boyd RA, Chin SK, Don-Pedro O, Verotta D, Scheiner LB, et al. The pharmacokinetics and pharmacodynamics of diltiazem and its metabolites in healthy adults after a single oral dose. Clinical Pharmacology and Therapeutics 46: 408–419, 1989

    PubMed  CAS  Google Scholar 

  • Campbell NRC, Sundaram RS, Werness PG, Van Loon J, Weinshilboum RM. Sulfate and methyldopa metabolism: metabolite patterns and platelet phenol sulfotransferase activity. Clinical Pharmacology and Therapeutics 37: 308–315, 1985

    PubMed  CAS  Google Scholar 

  • Carpi C, Dorigotti L, Semeraro C. Cadralazine and its identified metabolites: comparative effects on blood pressure and on arterial smooth muscle. Proceedings of the British Pharmaceutical Society: 188P–189P, 1980

  • Case DE. The clinical pharmacology of lisinopril. Journal of Human Hypertension 3: 127–131, 1989

    PubMed  Google Scholar 

  • Catalano M, Parini J, Libretti A. Cadralazine (ISF 2469): dose-related antihypertensive activity after single oral administration to patients. European Journal of Clinical Pharmacology 24: 157–161, 1983

    PubMed  CAS  Google Scholar 

  • Collste P, Borg KO, Astrom H, von Bahr C. Contribution of 4-hydroxyalprenolol to adrenergic beta receptor blockade of alprenolol. Clinical Pharmacology and Therapeutics 25: 416–422, 1979b

    PubMed  CAS  Google Scholar 

  • Collste P, Seideman P, Borg KO, Haglund K, von Bahr C. Influence of pentobarbital on effect and plasma levels of alprenolol and 4-hydroxyalprenolol. Clinical Pharmacology and Therapeutics 25: 423–428, 1979a

    PubMed  CAS  Google Scholar 

  • Debusmann ER, Pujadas JO, Lahn W, Irmisch R, Jane F, et al. Influence of renal function on the pharmacokinetics of ramipril (Hoe 498). American Journal of Cardiology 59: 70D–78D, 1987

    PubMed  CAS  Google Scholar 

  • De Jong W, Nijkamp FP. Centrally induced hypotension and bradycardia after administration of α-methylnoradrenaline into the area of the nucleus tractus solitarii of the rat. British Journal of Pharmacology 58: 593–598, 1976

    PubMed  Google Scholar 

  • DeLepeleire I, Van Hecken A, Verbesselt R, Kaiser G, Barner A. Interaction between furosemide and the converting enzyme inhibitor benazeprilat in healthy subjects. European Journal of Clinical Pharmacology 34: 465–468, 1988

    CAS  Google Scholar 

  • Donn KH, Powell JR, Rogers JF, Eshelman FN. Influence of H2-receptor antagonists on steady-state concentrations of propranolol and 4-hydroxypropranolol. Journal of Clinical Pharmacology 24: 500–508, 1984

    PubMed  CAS  Google Scholar 

  • Draffan GH, Lewis P, Firmin JL, Jordan TW, Dollery CT. Pharmacokinetics of indoramin in man. British Journal of Clinical Pharmacology 3: 489–495, 1976

    PubMed  CAS  Google Scholar 

  • Ferry JJ, Cetnarowski AB, Sedman AJ, Thomas RW, Horvath AM. Multiple-dose cimetidine administration does not influence the single-dose pharmacokinetics of quinapril and its active metabolite (CI-928). Journal of Clinical Pharmacology 28: 48–51, 1988

    PubMed  CAS  Google Scholar 

  • Ferry JJ, Horvath AM, Sedman AJ, Latts JR, Colburn WA. Influence of food on the pharmacokinetics of quinapril and its active diacid metabolite, CI-928. Journal of Clinical Pharmacology 27: 397–399, 1987

    PubMed  CAS  Google Scholar 

  • Fitzgerald JD, O’Donnell SR. Pharmacology of 4-hydroxypropranolol, a metabolite of propranolol. British Journal of Pharmacology 43: 222–235, 1971

    PubMed  CAS  Google Scholar 

  • Flouvat B, Roux A, Chau NP, Viallet M, Andre-Fouet X, et al. Pharmacokinetics and bioavailability of diacetolol, the main metabolite of acebutolol. European Journal of Clinical Pharmacology 19: 287–292, 1981

    PubMed  CAS  Google Scholar 

  • Franklin RA, Robson P, Stevenson D. Studies on the metabolism of the new anti-hypertensive agent, indoramin, in man. European Journal of Clinical Pharmacology 24: 629–634, 1983

    PubMed  CAS  Google Scholar 

  • Gardiner P, Schrode K, Quinlan D, Martin BK, Boreham DR, et al. Spironolactone metabolism: steady-state serum levels of the sulfur-containing metabolites. Journal of Clinical Pharmacology 29: 342–347, 1989

    PubMed  CAS  Google Scholar 

  • Gulaid AA, James IM, Kaye CM, Lewellen ORW, Roberts E, et al. The pharmacokinetics of acebutolol in man, following the oral administration of acebutolol HCl as a single dose (400mg) and during and after repeated oral dosing (400mg, b.d.). Biopharmaceutics and Drug Disposition 2: 103–114, 1981

    CAS  Google Scholar 

  • Gundert-Remy U, von Kenne D, Weber E, Geissler HE, Grebian B, et al. Plasma and urinary levels of triamterene and certain metabolites after oral administration to man. European Journal of Clinical Pharmacology 16: 39–44, 1979

    PubMed  CAS  Google Scholar 

  • Hasenfuss G, Schafer-Korting M, Knauf H, Mutschler E, Just H. Pharmcokinetics of carteolol in relation to renal function. European Journal of Clinical Pharmacology 29: 461–465, 1985

    PubMed  CAS  Google Scholar 

  • Himeno A, Kunisada K, Niwa M, Ozaki M. Alpha-methyladrenaline: a possible active metabolite of alpha-methyldopa in the rat brain. Japanese Journal of Pharmacology 39: 91–98, 1985

    PubMed  CAS  Google Scholar 

  • Ho PC, Bourne DWA, Triggs EJ, Smithurst BA. Comparison of plasma levels of canrenone and metabolites after base hydrolysis in young and elderly subjects following single and multiple doses of spironolactone. European Journal of Clinical Pharmacology 27: 435–439, 1984

    PubMed  CAS  Google Scholar 

  • Hoffman KJ, Regardh C-G, Aurell M, Ervik M, Jordo L. The effect of renal function on the plasma levels and urinary excretion of metoprolol metabolites. Clinical Pharmacokinetics 5: 181–191, 1980

    Google Scholar 

  • Horai Y, Nakano M, Ishizaki T, Ishikawa K, Zhou H, et al. Metoprolol and mephenytoin oxidation polymorphisms in far eastern oriental subjects: Japanese versus mainland Chinese. Clinical Pharmacology and Therapeutics 46: 198–207, 1989

    PubMed  CAS  Google Scholar 

  • Huang SM, Weintraub HS, Marriott TB, Marinan B, Abels R. Etintidine-propranolol interaction study in humans. Journal of Pharmacokinetics and Biopharmaceutics 15: 557–568, 1987

    PubMed  CAS  Google Scholar 

  • Hung J, Hackett PL, Gordon SPF, Ilett KF. Pharmacokinetics of diltiazem in patients with unstable angina pectoris. Clinical Pharmacology and Therapeutics 43: 466–470, 1988

    PubMed  CAS  Google Scholar 

  • Jack DB, Wilkins M, Quarterman CP. Lack of evidence for polymorphism in metoprolol metabolism. British Journal of Clinical Pharmacology 16: 188–190, 1983

    PubMed  CAS  Google Scholar 

  • Jackson L, Branch R, Levine D, Ramsay L. Elimination of canrenone in congestive heart failure and chronic liver disease. European Journal of Clinical Pharmacology 11: 177–179, 1977

    PubMed  CAS  Google Scholar 

  • Kaiser G, Ackermann R, Sioufi A. Pharmacokinetics of a new angiotensin converting enzyme inhibitor, benazepril hydrochloride in special populations. American Heart Journal 117: 746–751, 1989

    PubMed  CAS  Google Scholar 

  • Kandiah D, Penny WJ, Fraser AG, Lewis MJ. A possible drug interaction between rifampicin and enalapril. European Journal of Clinical Pharmacology 35: 431–432, 1988

    PubMed  CAS  Google Scholar 

  • Kelly JG, Doyle G, Donohue J, Laher M, Vandenburg MJ, et al. Pharmacokinetics of enalapril in normal subjects and patients with renal impairment. British Journal of Clinical Pharmacology 21: 63–69, 1986

    PubMed  CAS  Google Scholar 

  • Kelly JG, O’Malley K. Clinical pharmacokinetics of the newer ACE inhibitors: a review. Clinical Pharmacokinetics 19: 177–196, 1990

    PubMed  CAS  Google Scholar 

  • Knauf H, Mohrke W, Mutschler E, Volger KD. Zur Bioverfug-barkeit von Hydrochlorothiazid und Triamteren aus Fertigarzneimitteln. Arzneimittel-Forschung Drug Research 30: 1001–1004, 1980

    CAS  Google Scholar 

  • Kochak GM, Rakhit A, Thompson TN, Hurley ME. Pentoprilcimetidine interaction caused by a reduction in hepatic blood flow. Journal of Clinical Pharmacology 28: 222–227, 1988

    PubMed  CAS  Google Scholar 

  • Lecocq B, Funck-Brentano C, Lecocq V, Ferry A, Gardin ME, et al. Influence of food on the pharmacokinetics of perindopril and the time course of angiotensin-converting enzyme inhibition in serum. Clinical Pharmacology and Therapeutics 47: 392–402, 1990

    Google Scholar 

  • Lehmann K. Separation, isolation and identification of metabolic products of triamterene. Arzneimittel-Forschung 15: 812–816, 1965

    PubMed  CAS  Google Scholar 

  • Leonetti G, Parini J, Visconti M, Gradnik R. Pharmacokinetics of cadralazine in hypertensive patients. European Journal of Drug Metabolism and Pharmacokinetics 13: 295–300, 1988

    PubMed  CAS  Google Scholar 

  • Macfadyen RJ, Lees KR, Reid JL. Perindopril: a review of its pharmacokinetics and clinical pharmacology. Drugs 39 (Suppl. 1): 49–63, 1990

    PubMed  CAS  Google Scholar 

  • Massarella JW, DeFeo TM, Brown AN, Lin A, Wills RJ. The influence of food on the pharmacokinetics and ACE inhibition of cilazapril. British Journal of Clinical Pharmacology 27: 205S–209S, 1989

    PubMed  CAS  Google Scholar 

  • McInnes GT, Asbury MJ, Shelton JR, Harrison IR, Ramsay LE, et al. Activity of sulfur-containing intermediate metabolites of spironolactone. Clinical Pharmacology and Therapeutics 27: 363–369, 1980

    PubMed  CAS  Google Scholar 

  • Minamisawa K, Shionoiri H, Sugimoto K, Ueda S, Ashino K, et al. Depressor effects and pharmacokinetics of single and consecutive doses of delapril in hypertensive patients with normal or impaired renal function. Cardiovascular Drugs and Therapy 4: 1417–1424, 1990

    PubMed  CAS  Google Scholar 

  • Montamat SC, Abernethy DR. N-monodesmethyldiltiazem is the predominant metabolite of diltiazem in the plasma of young and elderly hypertensives. British Journal of Clinical Pharmacology 24: 185–189, 1987

    PubMed  CAS  Google Scholar 

  • Mooy J, Schols M, Baak M, Hooff M, Muytjens A, et al. Pharmacokinetics of verapamil in patients with renal failure. European Journal of Clinical Pharmacology 28: 405–410, 1985

    PubMed  CAS  Google Scholar 

  • Muhlberg W, Spahn H, Platt D, Mutschler E, Jung R. Pharmacokinetics of triamterene in geriatric patients — influence of piretanide and hydrochlorothiazide. Archives of Gerontology and Geriatrics 8: 73–85, 1989

    PubMed  CAS  Google Scholar 

  • Munn S, Bailey RR, Begg E, Ebert R, Ferry DG, et al. Plasma and urine concentrations of acebutolol and its acetyl metabolite in patients with renal functional impairment. New Zealand Medical Journal 81: 289–291, 1980

    Google Scholar 

  • Mutschler E, Gilfrich HJ, Knanf H, Mohnke W, Volger KD. Pharmacokinetics of triamterene. Clinical and Experimental Hypertension A5: 249–269, 1983

    CAS  Google Scholar 

  • Nakashima M, Uematsu T, Takiguchi S. Phase I study of cadralazine (DC-826), an antihypertensive drug with peripheral vasodilation (1st report). Rinsho Iyaku 3: 1301–1317, 1987

    Google Scholar 

  • Neugebauer G. Comparative cardiovascular actions of verapamil and its major metabolites in the anaesthetised dog. Cardiovascular Research 12: 247–254, 1978

    PubMed  CAS  Google Scholar 

  • Norbury HM, Franklin RA, Marrott PK, Warrington SJ. Pharmacokinetics of oral indoramin in elderly and middle-aged female volunteers. European Journal of Clinical Pharmacology 27: 247–249, 1984

    PubMed  CAS  Google Scholar 

  • O’Dea RF, Mirkin BL. Metabolic disposition of methyldopa in hypertensive and renal-insufficient children. Clinical Pharmacology and Therapeutics 27: 37–43, 1980

    PubMed  Google Scholar 

  • Ohnishi A, Tsuboi Y, Ishizaki T, Kubota K, Ohno T, et al. Kinetics and dynamics of enalapril in patients with liver cirrhosis. Clinical Pharmacology and Therapeutics 45: 657–665, 1989

    PubMed  CAS  Google Scholar 

  • Onoyama K, Nanishi F, Okuda S, Oh Y, Fujishima M, et al. Pharmacokinetics of a new angiotensin I converting enzyme inhibitor (delapril) in patients with deteriorated kidney function and in normal control subjects. Clinical Pharmacology and Therapeutics 43: 242–249, 1988

    PubMed  CAS  Google Scholar 

  • Overdiek HWPM, Merkus FWHM. Influence of food on the bioavailability of spironolactone. Clinical Pharmacology and Therapeutics 40: 531–536, 1986

    PubMed  CAS  Google Scholar 

  • Page LB, Yager HM, Sidd JJ. Drugs in the management of hypertension. American Heart Journal 92: 252–259, 1976

    PubMed  CAS  Google Scholar 

  • Pierce DM, Abrams SML, Franklin RA. Pharmacokinetics and systemic availability of the antihypertensive agent indoramin and its metabolite 6-hydroxyindoramin in healthy subjects. European Journal of Clinical Pharmacology 32: 619–623, 1987a

    PubMed  CAS  Google Scholar 

  • Pierce DM, Smith SE, Franklin RA. The pharmacokinetics of indoramin and 6-hydroxyindoramin in poor and extensive hydroxylators of debrisoquine. European Journal of Clinical Pharmacology 33: 59–65, 1987b

    PubMed  CAS  Google Scholar 

  • Platt D, Abshagen U, Muhlberg W, Horn HJ, Schmitt-Ruth R, et al. The influence of age and multimorbidity on the pharmacokinetics and metabolism of spironolactone. Archives of Gerontology and Geriatrics 3: 147–159, 1984

    PubMed  CAS  Google Scholar 

  • Pozet N, Brazier JL, Aissa AH, Khenfer D, Faucon G, et al. Pharmacokinetics of diltiazem in severe renal failure. European Journal of Clinical Pharmacology 24: 635–638, 1983

    PubMed  CAS  Google Scholar 

  • Raghuram TC, Koshakji RP, Wilkinson GR, Wood AJJ. Polymorphic ability to metabolize propranolol alters 4-hydroxypropranolol levels but not beta blockade. Clinical Pharmacology and Therapeutics 36: 51–56, 1984

    PubMed  CAS  Google Scholar 

  • Rakhit A, Hurley ME, Redalieu E, Kochak G, Tipnis V, et al. Effect of food on the bioavailability of pentopril, an angiotensin-converting-enzyme inhibitor, in healthy subjects. Journal of Clinical Pharmacology 25: 424–428, 1985

    PubMed  CAS  Google Scholar 

  • Rakhit A, Kochak GM, Tipnis V, Hurley ME. Inhibition of renal clearance of furosemide by pentopril, an angiotensin-converting-enzyme inhibitor. Clinical Pharmacology and Therapeutics 41: 580–586, 1987

    PubMed  CAS  Google Scholar 

  • Rakhit A, Radensky P, Szerlip HM, Kochak GM, Audet PR, et al. Effect of renal impairment on disposition of pentopril and its active metabolite. Clinical Pharmacology and Therapeutics 44: 39–48, 1988

    PubMed  CAS  Google Scholar 

  • Ramsay L, Asbury M, Shelton J, Harrison I. Spironolactone and canrenoate-K: relative potency at steady state. Clinical Pharmacology and Therapeutics 21: 602–609, 1977

    PubMed  CAS  Google Scholar 

  • Redman CWG, Kelly JG, Cooper WD. The excretion of enalapril and enalaprilat in human breast milk. European Journal of Clinical Pharmacology 38: 99, 1990

    PubMed  CAS  Google Scholar 

  • Regardh C-G, Jordo L, Ervik M, Lundborg P, Olsson R, et al. Pharmacokinetics of metoprolol in patients with hepatic cirrhosis. Clinical Pharmacokinetics 6: 375–388, 1981

    PubMed  CAS  Google Scholar 

  • Roux A, Aubert P, Guedon J, Flouvat B. Pharmacokinetics of acebutolol in patients with all grades of renal failure. European Journal of Clinical Pharmacology 17: 339–348, 1980

    PubMed  CAS  Google Scholar 

  • Ryan JR. Clinical pharmacology of acebutolol. American Heart Journal 109: 1131–1136, 1985

    PubMed  CAS  Google Scholar 

  • Schneck DW, Pritchard JF, Hayes AH. Measurement of propranolol, 4-hydroxypropranolol and propranolol glycol in human plasma. Research Communications in Chemical Pathology and Pharmacology 24: 3–12, 1979

    PubMed  CAS  Google Scholar 

  • Schoemaker H, Hicks PE, Langer SZ. Calcium channel receptor binding studies for diltiazem and its major metabolites: functional correlation to inhibition of portal vein myogenic activity. Journal of Cardiovascular Pharmacology 9: 173–180, 1987

    PubMed  CAS  Google Scholar 

  • Schunkert H, Kindler J, Gassmann M, Lahn W, Irmisch R, et al. Pharmacokinetics of ramipril in hypertensive patients with renal insufficiency. European Journal of Clinical Pharmacology 37: 249–256, 1989

    PubMed  CAS  Google Scholar 

  • Seiler K-U, Schuster KJ, Meyer G-J, Neidermayer W, Wassermann O. The pharmacokinetics of metoprolol and its metabolites in dialysis patients. Clinical Pharmacokinetics 5: 192–198, 1980

    PubMed  CAS  Google Scholar 

  • Semeraro C, Dorigotti L, Banfi S, Carpi C. Pharmacological studies on cadralazine: a new antihypertensive vasodilator drug. Journal of Cardiovascular Pharmacology 3: 455–467, 1981

    PubMed  CAS  Google Scholar 

  • Shaheen O, Biollaz J, Koshakji RP, Wilkinson GR, Wood AJJ. Influence of debrisoquin phenotype on the inducibility of propranolol metabolism. Clinical Pharmacology and Therapeutics 45: 439–443, 1989

    PubMed  CAS  Google Scholar 

  • Shionoiri H, Gotoh E, Takagi N, Takada K, Yabana M, et al. Antihypertensive effects and pharmacokinetics of single and consecutive doses of cilazapril in hypertensive patients with normal and impaired renal function. Journal of Cardiovascular Pharmacology 11: 242–249, 1988

    PubMed  CAS  Google Scholar 

  • Shionoiri H, Ikeda Y, Kimura K, Miyakawa T, Kaneko Y. Pharmacodynamics and pharmacokinetics of single-dose ramipril in hypertensive patients with various degrees of renal function. Current Therapeutic Research 40: 74–85, 1986

    Google Scholar 

  • Shionoiri H, Miyazaki N, Yasuda G, Miyakawa T, Takasaki I, et al. Pharmacokinetics and antihypertensive effects of single and consecutive dosing of alacepril (DU-1219) in patients with severe hypertension. Current Therapeutic Research 38: 537–547, 1985a

    Google Scholar 

  • Shionoiri H, Miyazaki N, Yasuda G, Sugimoto K, Uneda S. et al. Blood concentration and urinary excretion of enalapril in patients with chronic renal failure. Japanese Journal of Nephrology 27: 1291–1297, 1985b

    PubMed  CAS  Google Scholar 

  • Shionoiri H, Yasuda G, Abe Y, Yoshimura II, Kaneko Y, et al. Pharmacokinetics and acute effect on the renin-angiotensin system of delapril in patients with chronic renal failure. Clinical Nephrology 27: 65–70, 1987

    PubMed  CAS  Google Scholar 

  • Sica DA, Cutler RE, Parmer RJ, Ford NH. Comparison of the steady-state pharmacokinetics of fosinopril, lisinopril and enalapril in patients with chronic renal insufficiency. Clinical Pharmacokinetics 20: 420–427, 1991

    PubMed  CAS  Google Scholar 

  • Smith RS, Warren DJ, Renwick AG, George CF. Acebutolol pharmacokinetics in renal failure. British Journal of Clinical Pharmacology 16: 253–258, 1983

    PubMed  CAS  Google Scholar 

  • Storstein L, Midtbo K, Hals O, Myhre E. Antihypertensive effect of verapamil in relation to plasma concentrations of verapamil and its active metabolite norverapamil. Current Therapeutic Research 29: 112–119, 1981

    Google Scholar 

  • Swanson BN, Vlasses PH, Ferguson RK, Bergquist PA, Till AE, et al. Influence of food on the bioavailability of enalapril. Journal of Pharmaceutical Sciences 73: 1655–1657, 1984

    PubMed  CAS  Google Scholar 

  • Taburet A-M, Taylor AA, Mitchell JR. Plasma concentrations of propranolol and 4-hydroxypropranolol in man measured by high pressure liquid chromatography. Life Sciences 24: 209–217, 1979

    PubMed  CAS  Google Scholar 

  • Terauchi Y, Watari S, Ishikawa S, Takeyama K, Sekine Y, et al. Pharmacokinetics of an active cadralazine metabolite in plasma and blood vessels of spontaneously hypertensive rats. Arzneimittel-Forschung 38: 2237–2239, 1988

    Google Scholar 

  • Thomas MS, Tattersfield AE. Comparison of beta-adrenoceptor selectivity of acebutolol and its metabolite diacetolol with metoprolol and propranolol in normal man. European Journal of Clinical Pharmacology 29: 679–683, 1986

    PubMed  CAS  Google Scholar 

  • Todd PA, Benfield P. Ramipril: a review of its pharmacological properties and therapeutic efficacy in cardiovascular disorders. Drugs 39: 110–135, 1990

    PubMed  CAS  Google Scholar 

  • Todd PA, Goa KL. Enalapril: an update of its pharmacological properties and therapeutic use in congestive heart failure. Drugs 37: 141–161, 1989

    PubMed  CAS  Google Scholar 

  • Tsai HH, Lees KR, Howden CW, Reid JL. The pharmacokinetics and pharmacodynamics of perindopril in patients with liver cirrhosis. British Journal of Clinical Pharmacology 28: 53–59, 1989

    PubMed  CAS  Google Scholar 

  • Ward SA, Walle T, Walle UK, Wilkinson GR, Branch RA. Propranolol’s metabolism is determined by both mephenytoin and debrisoquin hydroxylase activities. Clinical Pharmacology and Therapeutics 45: 72–79, 1989

    PubMed  CAS  Google Scholar 

  • Wellstein A, Palm D, Wiemer G, Schafer-Korting M, Mutschler E. Single and reliable radioreceptor assay for beta-adrenoceptor antagonists and active metabolites in native human plasma. European Journal of Clinical Pharmacology 27: 545–553, 1984

    PubMed  CAS  Google Scholar 

  • Winkle RA, Meffin PJ, Ricks WB, Harrison DC. Acebutolol metabolite plasma concentration during chronic oral therapy. British Journal of Clinical Pharmacology 4: 519–522, 1977

    PubMed  CAS  Google Scholar 

  • Woodcock BG, Hopf R, Kaltenbach M. Verapamil and norverapamil plasma concentrations during long-term therapy in patients with hypertrophic obstructive cardiomyopathy. Journal of Cardiovascular Pharmacology 2: 17–23, 1980

    PubMed  CAS  Google Scholar 

  • Yabana H, Nagao T, Sato M. Cardiovascular effects of the metabolites of diltiazem in dogs. Journal of Cardiovascular Pharmacology 7: 152–157, 1985

    PubMed  CAS  Google Scholar 

  • Yoshimura M, Kojima J, Ito T, Suzuki J. Structural determination of dog and human urinary metabolites of nipradilol (K-351), a new antihypertensive agent. Chemical Pharmaceutical Bulletin 33: 3456–3468, 1985

    PubMed  CAS  Google Scholar 

  • Zaman R, Jack DB, Kendall MJ. The penetration of acebutolol and its major metabolite, diacetolol, into human cerebrospinal fluid and saliva. British Journal of Clinical Pharmacology 12: 427–429, 1981

    PubMed  CAS  Google Scholar 

  • Zhou H-H, Anthony LB, Roden DM, Wood AJJ. Quinidine reduces clearance of (+)-propranolol more than (−)-propranolol through marked reduction in 4-hydroxylation. Clinical Pharmacology and Therapeutics 47: 686–693, 1990

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebihara, A., Fujimura, A. Metabolites of Antihypertensive Drugs. Clin. Pharmacokinet. 21, 331–343 (1991). https://doi.org/10.2165/00003088-199121050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199121050-00002

Keywords

Navigation