Skip to main content
Log in

Recent Developments in Hepatic Drug Oxidation Implications for Clinical Pharmacokinetics

  • Research Review
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Cytochrome P450 (P450) is the collective term for a group of related enzymes or isozymes which are responsible for the oxidation of numerous drugs and other foreign compounds, as well as many endogenous substrates including prostaglandins, fatty acids and steroids. Each P450 is encoded by a separate gene, and a classification system for the P450 gene superfamily has recently been proposed. The P450 genes are assigned to families and subfamilies according to the degree of similarity of the amino acid sequences of the protein part of the encoded P450 isozymes. It is estimated that there are between 20 and 200 different P450 genes in humans.

The human P450IID6 is a particular isozyme which has been extensively studied over the past 10 years. The P450IID6 is the target of the sparteine/debrisoquine drug oxidation polymorphism. Between 5 and 10% of Caucasians are poor metabolisers, and it has recently been shown that the P450IID6 enzyme is absent in the livers of these individuals. The defect has also been characterised at the DNA and messenger RNA (mRNA) level, and to date 3 different forms of incorrectly spliced P450IID6 pre-mRNAs have been identified in the livers of poor metabolisers.

The P450IID6 has a broad substrate specificity and is known to oxidise 15 to 20 commonly used drugs. The metabolism of these drugs is therefore subjected to the sparteine/debrisoquine oxidation polymorphism. The clinical significance of this polymorphism for a particular drug is defined according to the usefulness of phenotyping patients before treatment. It is concluded that this strategy would be of potential value for tricyclic antidepressants, some neuroleptics (e.g. perphenazine and thioridazine) and some antiarrhythmics (e.g. propafenone and flecainide).

The P450IID6 displays markedly stereoselective metabolism and appears uninducible by common inducers like rifampicin and Phenazone (antipyrine). With some substrates, such as Imipramine, desipramine and propafenone. P450IID6 becomes saturated at therapeutic doses. Finally, its function is potently inhibited by many commonly used drugs, for example, quinidine.

The most clinically relevant interaction in relation to P450IID6 function appears to be the potent inhibition by some neuroleptics of the metabolism of tricyclic antidepressants.

No drug-metabolising P450 has been so well characterised at the gene, protein and functional levels as the P4501ID6. This development is based on an extensive use of specific model drugs, the oxidation of which in vitro and in vivo is dependent on the function of P450IID6; it can be expected that other human drug-metabolising P450s will be similarly characterised in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alvan G. Grind M. Grafiner C,. Sjöqvisl F. Relationship of Ndemethylalion of amiflamine and its metabolite to debrisoquine hydroxylation polymorphism. Clinical Pharmacology and Therapeutics 36: 515–519, 1984

    Article  PubMed  CAS  Google Scholar 

  • Alvan G. von Bahr C Seideman P, Sjöqvisl F. High plasma concentrations of β-receplor blocking drugs and deficient debrisoquine hydroxylation. Lancet 1: 333. 1982

    Article  PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE. Balant LP. Genet C. Dayer P. Acschlimann JM. et al. Importance of oxidative polymorphism and levomepromazine treatment on the steady-state blood concentrations of clomipramine and its major metabolites. European Journal of Clinical Pharmacology 31: 449–455. 1986

    Article  PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE. Schulz P. Dayer P, Balant L. Kübli A. et al. Role of oxidation polymorphism on blood and urine concentrations of amitriptyline and its metabolites in man. Archiv für Psychiatric und Nervenkrankheilen 232: 215–222. 1982

    Article  CAS  Google Scholar 

  • Balant LP, Gundcrt-Rcmy U, Boobis AR, von Bahr C. Genetic polymorphism in drug metabolism: relevance for the development of new drugs. European Journal of Clinical Pharmacology 36: 551–554, 1989

    Article  PubMed  CAS  Google Scholar 

  • Bargetzi MJ, Aoyama T, Gonzalez FJ, Meyer UA. Lidocaine metabolism in human liver microsomes by cytochrome P450I11A4. Clinical Pharmacology and Therapeutics, in press. 1989

  • Beckmann J. Hertrampf R, Gundert-Remy U. Mikus G, Gross AS. et al. Is there a genetic factor in flecainide toxicity? British Medical Journal 297: 1316. 1988

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson L. Aberg-Wistedt A. The debrisoquine hydroxylation lest predicts steady-state plasma levels of desipramine. British Journal of Clinical Pharmacology 15: 388–390, 1983

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson L. Eichelbaum M. Mellstrom B. Säwe J. Schulz H-V. et al. Nortriptyline and antipyrine clearance in relation to debrisoquine hydroxylation in man. Life Sciences 27: 1673–1677. 1980

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson L. Henthorn TK, Sanch E, Tybring G, Säwe J. et al. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debriso-quin, hydroxylation phenotype. Clinical Pharmacology and Therapeutics 45: 348–355, 1989

    Article  PubMed  CAS  Google Scholar 

  • Birgersson C, Morgan ET, Jörnvall H, von Bahr C. Purification of a desmethylimipraminc and debrisoquine hydroxylating cytochrome P-450 from human liver. Biochemical Pharmacology 35: 3165–3166. 1986

    Article  PubMed  CAS  Google Scholar 

  • Boobis AR. Edwards RJ. Singleton A. Sesardic D, Murray B. et al. The contribution of polymorphic isozymes of cytochrome P-450 to pharmacokinetics and toxicity of foreign compounds in man. In Miners et al. (Eds) Microsomes and drug oxidations — proceedings of the VIIth International Symposium. Adelaide, Australia, pp. 216–223. Taylor & Francis, London, New York. Philadelphia. 1988

    Google Scholar 

  • Boobis AR, Murray S, Kahn GC. Robertz GM. Davies DS. Substrate specificity of the form of cytochrome P450 catalyzing the 4-hydroxylation of debrisoquine in man. Molecular Pharmacology 23: 474–481. 1983

    PubMed  CAS  Google Scholar 

  • Brinn R. Brosen K, Gram LF. Haghfelt T. Otton SV. Sparteine oxidation is practically abolished in quinidine-treated patients. British Journal of Clinical Pharmacology 22: 194–197. 1986

    Article  PubMed  CAS  Google Scholar 

  • Brosen K. The relationship between Imipramine metabolism and the sparteine oxidation polymorphism. (Thesis). Danish Medical Bulletin 35: 460–467, 1988

    PubMed  CAS  Google Scholar 

  • Brosen K, Davidsen F. Gram LF. Quinidine kinetics after a single oral dose in relation to the sparteine oxidation polymorphism. British Journal of Clinical Pharmacology, in press. 1989

  • Brosen K, Gram LF. First-pass metabolism of Imipramine and desipramine: impact of the sparteine oxidation phenotype. Clinical Pharmacology and Therapeutics 43: 400–406. 1988

    Article  PubMed  CAS  Google Scholar 

  • Brosen K. Gram LF. Quinidine potently inhibits the 2-hydrox-ylation of imipramine and desipramine but not the demethylalion of imipramine. European Journal of Clinical Pharmacology 37: 155–160, 1989a

    Article  PubMed  CAS  Google Scholar 

  • Brosen K, Gram LF. Clinical significance of the sparteine/debrisoquine oxidation polymorphism. European Journal of Pharmacology 36: 537–547, 1989b

    Article  CAS  Google Scholar 

  • Brosen K, Klysner R, Gram LF, Otton SV. Bech P, et al. Steadystate concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. European Journal of Clinical Pharmacology 30: 679–684. 1986b

    Article  PubMed  CAS  Google Scholar 

  • Brosen K. Otton SV, Gram LF. Imipramine demcthylalion and hydroxylation: impact of the sparteine oxidation phenotype. Clinical Pharmacology and Therapeutics 40: 543–549. 1986a

    Article  PubMed  CAS  Google Scholar 

  • Brosen K, Otton SV. Gram LF. Sparteine oxidation polymorphism, a family study. British Journal of Clinical Pharmacology 21: 661–667, 1986c

    Article  PubMed  CAS  Google Scholar 

  • Cooper RG, Evans DAP. Price AH. Studies on the metabolism of perhexiline in man. European Journal of Clinical Pharmacology 32: 569–576. 1987

    Article  PubMed  CAS  Google Scholar 

  • Dahl-Puustinen ML. Lidén A. Alm C. Nordin C, Bertilsson L. Disposition of perphenazine is related to the polymorphic debrisoquinc hvdroxylalion in human beings. Clinical Pharmacology and Therapeutics 46: 78–81. 1989

    Article  PubMed  CAS  Google Scholar 

  • Dayer P. Desmeules J. Leemann T. Stribcrni R. Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hy-droxvlation. Biochemical and Biophysical Research Communications 152: 411–416. 1988

    Article  PubMed  CAS  Google Scholar 

  • Dayer P. Gasser R. Gut J. Kronbach T. Robertz GM. et al. Characterization of a common genetic defect of cytochrome P-450 function (debrisoquine/spaneine type polymorphism!. Biochemical and Biophysical Research Communications 125: 374–380. 1984

    Article  PubMed  CAS  Google Scholar 

  • Dencker H. Dencker SJ. Green A. Nagy A. Intestinal absorption, demethylation and enterohepatic circulation of imipramine. Clinical Pharmacology and Therapeutics 19: 584–586. 1976

    PubMed  CAS  Google Scholar 

  • Dcsmeules J. Dayer P. Gascon M-P. Magristis M. Impact of genetic and environmental factors in codeine analgesia. Clinical Pharmacology and Therapeutics 45: 122. 1989

    Google Scholar 

  • Distlerath LM. Reilly PEB. Martin MV. Davies GG. Wilkinson GR. et al. Purification and characterization of the human liver cytochrome P-450 involved in debrisoquine and phenacetin O-demethylation, two prototypes for genetic polymorphism in oxidative drug metabolism. Journal of Biological Chemistry 260: 9057–9067. 1985

    PubMed  CAS  Google Scholar 

  • Eichelbaum M. Baur MP. Dengler HJ. Osikowska-Evers BO. Tieves G. et al. Chromosomal assignment of human cytochrome P450 (debrisoquine/sparteinc type) to chromosome 22. British Journal of Clinical Pharmacology 23: 455–458. 1987

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M. Bertilsson L. Kupfer A. Steiner E. Meese CO. Enantioselectivity of 4-hydroxylation in extensive and poor metabolizers of debrisoquine. British Journal of Clinical Pharmacology 25: 505–508. 1988

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M. Bertilsson L. Sawe J. Zekorn C Polymorphic oxidation of sparteine and debrisoquine: related pharmacogenetic entities. Clinical Pharmacology and Therapeutics 31: 184–186, 1982

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M. Mineshita S. Ohnhaus EE, Zekorn C. The influence of enzyme induction on polymorphic sparteine oxidation. British Journal of Clinical Pharmacology 22: 49–53. 1986

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M. Spannbrucker N. Dengler HJ. Influence of the defective metabolism of sparteine on its pharmacokinetics. European Journal of Clinical Pharmacology 16: 189–194. 1979b

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M. Spannbrucker N. Stemckc B. Dengler HJ. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. European Journal of Clinical Pharmacology 16: 183–187. 1979a

    Article  PubMed  CAS  Google Scholar 

  • Evans DAP. Harmer D. Downham DV. Whibley EJ. Idle JR. et al. The genetic control of sparteine and debrisoquine metabolism with new methods of analysing biomodal distributions. Journal of Medical Genetics 20: 321–329, 1983

    Article  PubMed  CAS  Google Scholar 

  • Evans DAP. Mahgoub A. Sloan TP. Idle JR. Smith RL. A family and population study of genetic polymorphism of debrisoquine oxidation in a white British population. Journal of Medical Genetics 17: 102–105. 1980

    Article  PubMed  CAS  Google Scholar 

  • Feher MD. Lucas RA. Farid NA. Idle JR. Bergstrom RF. et al. Single dose pharmacokinetics of tomoxetine in poor and extensive melabolisers of debrisoquine. British Journal of Clinical Pharmacology 26: 231P. 1988

    Google Scholar 

  • Fonné-Pfister R. Meyer U.A. Xenobiolic and endobiotic inhibitors of cytochrome P450dbl function, the target of the debrisoquine/spaneine type polymorphism. Biochemical Pharmacology 37: 3829–3835. 1988

    Article  PubMed  Google Scholar 

  • Freeman DJ. Martel R. Carruthers SG. Heinrichs D. Keown DA. et al. Cyclosporin-erythromycin interaction in normal subjects. British Journal of Clinical Pharmacology 23: 776–778. 1985

    Google Scholar 

  • Ged C. Umbenhauer DR. Bellew TM. Bork RW Srivastava PK. et al. Characterization of cDNAs. mRN As and proteins related to human liver microsomal cytochrome P-450 (S)-mephenytoin 4′-hydroxylalion. Biochemistry 27: 6929–6940. 1988

    Article  PubMed  CAS  Google Scholar 

  • Gleiter CH. Aichele G. Nilsson E. Hengen N. Antonin KH. et al. Discovery of altered pharmacokinetics of CGP 15 210G in poor hydroxylators of debrisoquine during early drug development. British Journal of Clinical Pharmacology 20: 81–84. 1985

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez FJ. Skoda R. Kimura S. Umeno M. Zanger UM. et al. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331: 442–446. 1988a

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez FJ. Vilbois F. Hardwick JP. McBridge OW. Neben DW. et al. Human debrisoquine 4-hydroxylase (P450IIDI): cDNA and deduced amino acid sequence and assignment of the CYP2D locus to chromosome 22. Genomics 2: 174–179. 1988b

    Article  PubMed  CAS  Google Scholar 

  • Ciram LF. Brosen K. Inhibitors of the microsomal oxidation of psychotropic drugs: selectivity and clinical significance. In Dahl & Gram (Eds) Clinical pharmacology in psychiatry: from molecular studies to clinical reality, pp. 172–180. Springer Verlag, Heidelberg, 1989

    Google Scholar 

  • Gram LF. Brosen K. Kragh-Sorensen P. Chnstensen P. Steadystate levels of E- and Z-10-OH nortriptyline in nortriptyline treated patients: significance of concurrent mediation and the sparteine oxidation phenotvpe. Therapeutic Drug Monitoring 11: 508–514, 1989b

    Article  PubMed  CAS  Google Scholar 

  • Gram LF, Christiansen J. First-pass metabolism of imipramine in man. Clinical Pharmacology and Therapeutics 17: 555–563. 1975

    PubMed  CAS  Google Scholar 

  • Gram LF. Debruyne D. Caillard V. Boulenger J P. Lacotte J, et al. Substantial rise in sparteine metabolic ratio during halo-peridol treatment. British Journal of Clinical Pharmacology 27: 272–275. 1989a

    Article  PubMed  CAS  Google Scholar 

  • Gram LF. Fredericson OK. Drug interaction: inhibitory effect of neuroleptics on the metabolism of tricyclic antidepressants in man. British Medical Journal 163: 463–465. 1972

    Article  Google Scholar 

  • Gram LF. Sondergaard I. Christiansen J. Petersen GO. Bech P. et al. Steady-state kinetics of imipramine in patients. Psychopharmacology 54: 255–261. 1977

    Article  PubMed  CAS  Google Scholar 

  • Guengerich FP. Martin MV. Beaunc PH. Krcmers P. Wolff T. et al. Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. Journal of Biological Chemistry 261: 5051–5060. 1986a

    PubMed  CAS  Google Scholar 

  • Guengerich FP. Muller-Enoch D. Blair IA. Oxidation of quinidine by human liver cytochrome P-450. Molecular Pharmacology 30: 287–295. 1986b

    PubMed  CAS  Google Scholar 

  • Ciut J. Catin T. Dayer P. Kronbach T. Zanger U, et al. Debrisoquine/sparteine-type polymorphism of drug oxidation. Journal of Biological Chemistry 261: 11734–11743. 1986b

    Google Scholar 

  • Gut J. Gasser R. Dayer P. Kronbach T. Catin T Debnsoquinetype polymorphism of drug oxidation: purification from human liver of a cytochrome P-450 isozyme with high activity for bufuralol hydroxylation. FEBS Letters 173: 287–290. 1984

    Article  PubMed  CAS  Google Scholar 

  • Gut J. Meier UT. Catin T. Meyer U.A. Mephenytoin-type polymorphism of drug oxidation: purification and characterization of a human liver cytochrome P-450 isozyme catalyzing microsomal mephenytoin hvdroxvlation. Biochimica et Biophysica Acta 884: 435–447. 1986a

    Article  PubMed  CAS  Google Scholar 

  • Inaba T. Jurima M. Mahon WA, Kalow W. In vitro studies of two isozymes of human liver cytochrome P450 Mephenytoin p-hydroxylase and sparteine monooxygenase. Drug Metabolism and Disposition 13: 443–448. 1985

    PubMed  CAS  Google Scholar 

  • Lyun AO. Lennard MS. Tucker GT. Woods HF. Metroprolol and debnsoquin metabolism in Nigerians: lack of evidence for polymorphic oxidation. Clinical Pharmacology and Therapeutics 40: 387–394. 1986

    Article  Google Scholar 

  • Jackson PR. Tucker GT. Lennard S. Woods HF. Polymorphic drug oxidation: pharmacokinetic basis and comparison of experimental indices. British Journal of Clinical Pharmacology 22: 541–550. 1986

    Article  PubMed  CAS  Google Scholar 

  • Kitchen I. Tremblay J. Audré J. Dring LG. Idle JR. et al. Inter-individual and interspecies variation in the metabolism of the hallucinogen 4-methoxyamphetamine. Xenobiotica 9: 397–404. 1979

    Article  PubMed  CAS  Google Scholar 

  • Knodell RG. Raghvcndra KD. Wilkinson GR. Guengerich FP. Oxidative metabolism of hexobarbital in human liver: relationship to polymorphic S-mephenytoin 4-hydroxylation. Journal of Pharmacology and Experimental Therapeutics 245: 845–849. 1988

    PubMed  CAS  Google Scholar 

  • Kroemer HK. Mikus G. Kronbach T. Meyer UA. Eichelbaum M. In vitro characterisation of the human cytochrome P-450 involved in polymorphic oxidation of propafenone. Clinical Pharmacology and Therapeutics 45: 28–33. 1989

    Article  PubMed  CAS  Google Scholar 

  • Kronbach T. Fischer V. Meyer UA. Cyclosporine metabolism in human liver: identification of a cytochrome P450III gene family as the major cyclosporine metabolizing enzyme explains interactions of cyclosporine with other drugs. Clinical Pharmacology and Therapeutics 43: 630–635. 1988

    Article  PubMed  CAS  Google Scholar 

  • Kronbach T. Mathys D. Gut J. Catin T. Meyer UA. High-performance liquid chromatographic assays for bufuralol I’-hydroxylase, debrisoquinc 4-hydroxylase, and dextromethorphan O-demelhylasc in microsomes and purified cytochrome P-450 isozymes of human liver. Analytical Biochemistry 162: 24–32. 1987

    Article  PubMed  CAS  Google Scholar 

  • Kronbach T. Mathys D. Umeno M. Gonzalez FJ. Meyer UA. Oxidation of midazolam and triazolam by human liver cytochrome P450111A4. Molecular Pharmacology 36: 89–96. 1989

    PubMed  CAS  Google Scholar 

  • Kupfer A. Branch RA. Stereoselective mephobarbital hydroxylation cosegregates with mephenytoin hydroxylation. Clinical Pharmacology and Therapeutics 38: 414–418. 1985

    Article  PubMed  CAS  Google Scholar 

  • Kupfer A. Preisig R. Pharmacogenetics of mephenytoin: a new drug hydroxylation polymorphism in man. European Journal of Clinical Pharmacology 26: 753–759. 1984

    Article  PubMed  CAS  Google Scholar 

  • Leemann TP. Dayer P. Meyer UA. Single-dose quinidinc treatment inhibits meloprolol oxidation in extensive metabolisers. European Journal of Clinical Pharmacology 29: 739–741, 1986

    Article  PubMed  CAS  Google Scholar 

  • Lennard MS. Tucker GT. Silas JH. Freestone S. Ramsay LE. et al. Differential stereoselective metabolism of metoprolol in extensive and poor debrisoquin metabolizers. Clinical Pharmacology and Therapeutics 34: 732–737. 1983

    Article  PubMed  CAS  Google Scholar 

  • Lewis RV. Lennard MS. Jackson PR. Tucker GT. Ramsay LE. et al. Timolol and atenolol: relationships between oxidation phenotype, pharmacokinetics and pharmacodynamics. British Journal of Clinical Pharmacology 19: 329–333. 1985

    Article  PubMed  CAS  Google Scholar 

  • Lou YC, Ying L, Bertilsson L, Sjöqvist F. Low frequency of slow debrisoquine hydroxylation in a native Chinese population. Lancet 2: 852–853. 1987

    PubMed  CAS  Google Scholar 

  • Mackiewich R. Martin JB. Pain: pathophysiology and management. In Braunwald et al. (Eds) Harrison’s principles of internal medicine, 11th ed. pp. 13–17. McGraw Hill. 1987

  • Mahgoub A, Idle JR. Dring LG. Lancaster R, Smith RL. Polymorphic hydroxylation of debrisoquine in man. Lancet 2: 584–586. 1977

    Article  PubMed  CAS  Google Scholar 

  • McGourty JC. Silas JH. Lennard MS, Tucker GT. Woods HF. Metoprolol metabolism and debrisoquine oxidation polymorphism — population and family studies. British Journal of Clinical Pharmacology 20: 555–566. 1985

    Article  PubMed  CAS  Google Scholar 

  • Meier PJ. Mueller HK, Dick B. Meyer UA. Hepatic monooxy-genase activities in subjects with a genetic defect in drug oxidation. Gastroenterology 85: 682–692. 1983

    PubMed  CAS  Google Scholar 

  • Mellslröm B. Bertilsson L, Lou Y-C, Sawe J, Sjöqvist F. Amitriptyline metabolism: relationship to polymorphic debrisoquine hydroxylation. Clinical Pharmacology and Therapeutics 34: 516–520. 1983

    Article  Google Scholar 

  • Mellslröm B, Bertilsson L. Säwe J. Schulz H-V. Sjöqvist F. E-and Z-hydroxylation of nortriptyline: relationship to polymorphic debrisoquine hydroxylation. Clinical Pharmacology and Therapeutics 30: 189–193. 1981

    Article  Google Scholar 

  • Meyer UA, Gut J, Kronbach T. Skoda C. Meier UT. et al. The molecular mechanisms of two common polymorphisms of drug oxidation — evidence for functional changes in cytochrome P-450 isozymes catalysing bufuralol and mephenytoin oxidation. Xenobiotica 16: 449–464. 1986

    Article  PubMed  CAS  Google Scholar 

  • Mikus G, Ha HR. Vozeh S, Zekorn F. Follath F, et al. Pharmacokinetics and metabolism of quinidine in extensive and poor metabolizers of sparteine. European Journal of Clinical Pharmacology 31: 69–72. 1986

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K. Goto F. Ray WA. McAllister CB. Jacqc E. et al. Interethnic differences in genetic polymorphism of debrisoquin and mephenytoin hydroxylation between Japanese and Caucasian populations. Clinical Pharmacology and Therapeutics 38: 402–408. 1985

    Article  PubMed  CAS  Google Scholar 

  • Neben DW. Adesnick M. Coon MJ. Estabrook RW, Gonzalez FJ, el al. The P450 gene superfamily: recommended nomenclature. DNA 6: 1–11, 1987

    Article  Google Scholar 

  • Neben DW, Nelson DR. Adesnik M. Coon MJ. Estabrook RW. et al. The P450 superfamily: update on listing of all genes and recommended nomenclature of the chomosomal loci. DNA 8: 1–13. 1989

    Article  Google Scholar 

  • Nelson DR. Strobel HW, Evolution of P450 proteins. Molecular Biology of Evolution 4: 572–593. 1987

    CAS  Google Scholar 

  • Oates NS. Shah RR. Idle JR. Smith RC. Influence of oxidation polymorphism on phenformin kinetics and dynamics. Clinical Pharmacology and Therapeutics 34: 827–834, 1983

    Article  PubMed  CAS  Google Scholar 

  • Otton SV, Brinn RV, Gram LF. In vitro evidence against the oxidation of quinidine by the spaneine/debrisoquine monox-ygenase of the human liver. Drug Metabolism and Disposition 16: 15–17. 1988a

    PubMed  CAS  Google Scholar 

  • Otton SV, Crewe HK, Lennard MS, Tucker GT, Woods HF. Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes. Journal of Pharmacology and Experimental Therapeutics 247: 242–247, 1988b

    PubMed  CAS  Google Scholar 

  • Otton SV, Inaba T, Kalow W. Competitive inhibition of sparteine oxidation in human liver by beta-adrenoceptor antagonists and other cardiovascular drugs. Life Sciences 34: 73–80, 1984

    Article  PubMed  CAS  Google Scholar 

  • Otton SV, Inaba T, Mahon WA, Kalow W. In vitro metabolism of sparteine by human liver, competitive inhibition by debrisoquine. Canadian Journal of Physiology and Pharmacology 60: 102–105. 1982

    Article  PubMed  CAS  Google Scholar 

  • Pierce MD, Smith SE, Franklin RA. The pharmacokinetics of Indoramin and 6-hydroxyindoram in poor and extensive metabolizers of debrisoquine. European Journal of Clinical Pharmacology 33: 59–65. 1987

    Article  PubMed  CAS  Google Scholar 

  • Rollins DE. Alvan G. Bertilsson L. Gillette JR. Mellslröm B. et al. Interindividual differences in amitriptyline demethylation. Clinical Pharmacology and Therapeutics 28: 121–129, 1980

    Article  PubMed  CAS  Google Scholar 

  • Rowland M, Tozer TN. Clinical pharmacokinetics — concepts and applications. Lea and Febiger, Philadelphia, 1980

    Google Scholar 

  • Roy SD. Hawes EM. McKay G. Korchinski ED, Midha KK. Metabolism of methoxyphenamine in extensive and poor metabolizers of debrisoquin. Clinical Pharmacology and Therapeutics 38: 128–133, 1985

    Article  PubMed  CAS  Google Scholar 

  • Schellens JHM. Characterization of a human drug oxidation in vivo — development of a ‘Cocktail’ study design. Thesis, University of Leiden, The Netherlands, 1988

    Google Scholar 

  • Sesardic D, Boobis AR, Edwards RJ. Davies DS. A form of cytochrome P450 in man, orthologous to form d in the rat, catalyzes the O-dcethy lation of phenacetin and is inducible by cigarette smoking. British Journal of Clinical Pharmacology 26: 363–372, 1988

    Article  PubMed  CAS  Google Scholar 

  • Shimada T, Misono KS. Guengerich FP. Human liver microsomal cytochrome P-450 mephenytoin 4-hyroxylase, a prototype of genetic polymorphism in oxidative drug metabolism. Journal of Biological Chemistry 261: 909–921. 1986

    PubMed  CAS  Google Scholar 

  • Siddoway LA, Thompson KA, McAllister CB. Wang T, Wilkinson GR. et al. Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Circulation 75: 785–791. 1987

    Article  PubMed  CAS  Google Scholar 

  • Sloan TP, Lancaster R, Shah RR, Idle JR. Smith RL. Genetically determined oxidation capacity and the disposition of debrisoquine. British Journal of Clinical Pharmacology 15: 443–450. 1983

    Article  PubMed  CAS  Google Scholar 

  • Sloan TP. Mahgoub A. Lancaster R. Idle JR. Smith RL. Polymorphism of carbon oxidation of drugs and clinical implications. British Medical Journal 2: 655–657. 1978

    Article  PubMed  CAS  Google Scholar 

  • Speight TM (Ed.) Avery’s drug treatment: principles and practice of clinical pharmacology and therapeutics. 3rd ed.. ADIS Press Limited, Auckland. 1987

    Google Scholar 

  • Speirs CJ. Murray S. Boobis AR. Seddon CE. Davies DS. Quinidine and the identification of drugs whose elimination is impaired in subjects classified as poor metabolizers of debnsoquine. British Journal of Clinical Pharmacologv 22: 739–743. 1986

    Article  CAS  Google Scholar 

  • Steiner E, Bertilsson L. Sawe J. Berthling I. Sjoqvisl F. Polymorphic debnsoquin hydroxylation in 757 Swedish subjects. Clinical Pharmacology and Therapeutics 44: 431–435. 1988a

    Article  PubMed  CAS  Google Scholar 

  • Steiner E. Dumont E. Spina E. Dahlqvist R. Inhibition of desipramine 2-hydroxylation by quinidine and quinine. Clinical Pharmacology and Therapeutics 43: 577–581. 1988b

    Article  PubMed  CAS  Google Scholar 

  • Steiner E. Iselius L. Alvan G. Lindsten J. Sjoqvist F. A family study of genetic and environmental factors determining polymorphic hydroxylation of debrisoquin. Clinical Pharmacology and Therapeutics 38: 394–401, 1985

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya T. Levy V. Relationship between dose and plateau levels of drugs eliminated by parallel first order and capacity limited kinetics. Journal of Pharmaceutical Science 61: 541–544. 1972

    Article  CAS  Google Scholar 

  • Vogel F. Motulsky AG. Human genetics, problems and approaches. Springer-Verlag, Berlin, Heidelberg, New York, 1982

    Google Scholar 

  • von Bahr C, Birgersson C, Blanck A. Göransson M, Mellstrom B, et al. Correlation between nortriptyline and debrisoquine hvdroxvlation in the human liver. Life Sciences 33: 631–636. 1983

    Article  Google Scholar 

  • von Bahr C. Groth CG. Jansson H. Lundgren G, Lind M. et al. Drug metabolism in vitro: establishment of a human liver bank. Clinical Pharmacology and Therapeutics 27: 711–725, 1980

    Article  Google Scholar 

  • von Bahr C. Guengerich FP. Movin G, Nordin C The use of human liver banks in pharmacogenelic research. In Dahl & Gram (Eds) Clinical pharmacology in psychiatry: from molecular studies to clinical reality, pp. 163–171, Springer Verlag, Heidelberg, 1989

    Chapter  Google Scholar 

  • von Bahr C, Spina E, Birgersson C,, Ericsson Ö, Göransson M, et al. Inhibition of desmethylimipramine 2-hydroxylation by drugs in human liver microsomes. Biochemical Pharmacology 34: 2501–2505. 1985

    Article  Google Scholar 

  • Wagner F. Tlenk D. Jänchen E, Roskamm H, Kalusche D Drug interaction between propafenone and metoprolol. British Journal of Clinical Pharmacology 24: 213–220. 1987

    Article  PubMed  CAS  Google Scholar 

  • Watkins PB. Wrightson SA. Muriel P. Schuelz EG. Mendez-Picon G, et al. Identification of an inducible form of cytochrome P-450 in human liver. Proceedings of the National Academy of Sciences 82: 6310–6314. 1985

    Article  CAS  Google Scholar 

  • Wolf T. Distlerath LM, Worthington MT. Groopman JD. Hammons GT, et al. Substrate specificity of human liver cytochrome P-450 debrisoquine 4-hydroxylase probed using immunochemical inhibition and chemical modelling. Cancer Research 45: 2116–2122. 1985

    Google Scholar 

  • Zanger UM, Hauri HP, Loeper J, Homberg JC, Meyer UA. Antibodies against human cytochrome P450dbl in autoimmune hepatitis type II Proceedings of the National Academy of Sciences 85: 8256–8260. 1988b

    CAS  Google Scholar 

  • Zanger LIM, Vilbois F, Hardwick J, Meyer UA. Absence of hepatic cytochrome P450buflcauses genetically deficient debrisoquine oxidation in man. Biochemistry 27: 5447–5454. 1988a

    Article  PubMed  CAS  Google Scholar 

  • Zekorn C, Achten G, Hausleiter HJ. Moon CH. Eichelbaum M. Pharmacokinetics of N-propylajmaline in relation to polymorphic sparteine oxidation. Klinische Wochenschrift 63: 1180–1186, 1985

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brosen, K. Recent Developments in Hepatic Drug Oxidation Implications for Clinical Pharmacokinetics. Clin Pharmacokinet 18, 220–239 (1990). https://doi.org/10.2165/00003088-199018030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199018030-00004

Keywords

Navigation