Skip to main content
Log in

Androgen Deficiency as a Predictor of Metabolic Syndrome in Aging Men

An Opportunity for Intervention?

  • Current Opinion
  • Published:
Drugs & Aging Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The prevalence of metabolic syndrome is increasing globally and is an important risk factor for the development of cardiovascular disease. Longitudinal population studies have found that low testosterone status in men is a risk factor for the later development of metabolic syndrome. Men with metabolic syndrome and type 2 diabetes mellitus have a higher incidence of hypotestosteronaemia. Furthermore, in men, testosterone levels are inversely associated with the degree of carotid and aortic atherosclerosis. Early interventional, short-term studies have shown that testosterone replacement therapy has a beneficial effect on visceral obesity, insulin sensitivity, glycaemic control and lipid profiles in men with diagnosed hypogonadism with and without diabetes. The effect of testosterone therapy on atherogenesis in men is unknown; however, animal studies have shown that testosterone is atheroprotective and can ameliorate the degree of atherosclerosis. Testosterone is an arterial vasodilator and has been shown to improve myocardial ischaemia in men with coronary artery disease. This review discusses the role that testosterone may play in the pathogenesis of metabolic syndrome in men and also examines the potential role of testosterone replacement therapy in this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1

Similar content being viewed by others

References

  1. Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001; 24: 683–9

    Article  CAS  PubMed  Google Scholar 

  2. Wilson PW, D’Agostino RB, Parise H, et al. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005; 112(20): 3066–72

    Article  CAS  PubMed  Google Scholar 

  3. Reaven GM. Banting Lecture 1988: role of insulin resistance in human disease. Diabetes 1988; 37: 1595–607

    Article  CAS  PubMed  Google Scholar 

  4. World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: part 1. Diagnosis and classification of diabetes mellitus. Geneva: World Health Organization, 1999

    Google Scholar 

  5. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486–97

    Article  Google Scholar 

  6. Balkau B, Charles MA. Comment on the provisional report from the WHO consultation: European Group for the Study of Insulin Resistance (EGIR). Diabetic Medicine 1999; 16: 442–3

    Article  CAS  PubMed  Google Scholar 

  7. International Diabetes Foundation. The IDF consensus worldwide definition of the metabolic syndrome 2005 [online]. Available from URL: http://www.idf.org/webdata/docs/IDF_Meta_def_final.pdf [Accessed 2008 Mar 20]

  8. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005; 112(17): 2735–52

    Article  PubMed  Google Scholar 

  9. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002; 287(3): 356–9

    Article  PubMed  Google Scholar 

  10. Rayner M, Mockford C, Boaz A. British Heart Foundation statistics database. London: British Heart Foundation Education Department, 1998

    Google Scholar 

  11. Makhsida N, Shah J, Yan G, et al. Hypogonadism and metabolic syndrome: implications for testosterone therapy. J Urol 2005; 174: 827–34

    Article  CAS  PubMed  Google Scholar 

  12. Malkin CJ, Pugh PJ, Jones TH, et al. Testosterone for secondary prevention in men with ischaemic heart disease? Q J Med 2003; 96: 521–9

    Article  CAS  Google Scholar 

  13. Shores MM, Matsumoto AM, Sloan KL, et al. Low serum testosterone and mortality in male veterans. Arch Intern Med 2006; 166: 1660–5

    Article  CAS  PubMed  Google Scholar 

  14. Laughlin GA, Barrett-Connor E, Bergstrom J. Low serum testosterone and mortality in older men. J Clin Endocrinol Metab 2008; 93: 68–75

    Article  CAS  PubMed  Google Scholar 

  15. Araujo AB, Kupelian V, Page ST, et al. Sex steroids and all-cause and cause-specific mortality in men. Arch Intern Med 2007; 167: 1252–60

    Article  CAS  PubMed  Google Scholar 

  16. Bremner WJ, Vitiello MV, Prinz PN. Loss of circadian rhythmicity in blood testosterone levels with aging in normal men. J Clin Endocrinol Metab 1983; 56(6): 1278–81

    Article  CAS  PubMed  Google Scholar 

  17. Diver MJ, Imtiaz KE, Ahmad AM, et al. Diurnal rhythms of serum total, free and bioavailable testosterone and of SHBG in middle-aged men compared with those in young men. Clin Endocrinol 2003; 39: 710–7

    Article  Google Scholar 

  18. Rosner W, Hyrb DJ, Khan MS, et al. Sex hormone-binding globulin mediates steroid hormone signal transduction at the plasma membrane. J Steroid Biochem Mol Biol 1999; 69: 481–5

    Article  CAS  PubMed  Google Scholar 

  19. Laaksonen DE, Niskanen L, Punnonen K, et al. Sex hormones, inflammation and the metabolic syndrome: a population-based study. Eur J Endocrinol 2003; 149: 601–8

    Article  CAS  PubMed  Google Scholar 

  20. Laaksonen DE, Niskanen L, Punnonen K, et al. Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care 2004; 27: 1036–41

    Article  CAS  PubMed  Google Scholar 

  21. Muller M, Grobbee DE, den Tonkelaar I, et al. Endogenous sex hormones and metabolic syndrome in aging men. J Clin Endocrinol Metab 2005; 90: 2618–23

    Article  CAS  PubMed  Google Scholar 

  22. Maggio M, Lauretani F, Ceda GP, et al. Association between hormones and metabolic syndrome in older Italian men. J Am Geriatr Soc 2006; 54: 1832–8

    Article  PubMed  Google Scholar 

  23. Blouin K, Despres JP, Couillard C, et al. Contribution of age and declining androgen levels to features of the metabolic syndrome in men. Metabolism 2005; 54: 1034–40

    Article  CAS  PubMed  Google Scholar 

  24. Kupelian V, Page ST, Araujo AB, et al. Low sex hormone-binding globulin, total testosterone, and symptomatic androgen deficiency are associated with development of the metabolic syndrome in nonobese men. J Clin Endocrinol Metab 2006; 91: 843–50

    Article  CAS  PubMed  Google Scholar 

  25. Simon D, Preziosi P, Barrett-Connor E, et al. Interrelation between plasma testosterone and plasma insulin in healthy adult men: the Telecom Study. Diabetologia 1992; 35: 173–7

    Article  CAS  PubMed  Google Scholar 

  26. Barrett-Connor E, Khaw KT. Endogenous sex hormones and cardiovascular disease in men: a prospective population-based study. Circulation 1988; 78: 539–45

    Article  CAS  PubMed  Google Scholar 

  27. Abate N, Haffner SM, Garg A, et al. Sex steroid hormones, upper body obesity and insulin resistance. J Clin Endocrinol Metab 2002; 87: 4522–7

    Article  CAS  PubMed  Google Scholar 

  28. Selvin E, Feinleib M, Zhang L, et al. Androgens and diabetes in men: results from the Third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care 2007; 30: 234–8

    Article  CAS  PubMed  Google Scholar 

  29. Barrett-Connor E, Khaw KT, Yen SS. Endogenous sex hormone levels in older men with diabetes mellitus. Am J Epidemiol 1990; 132: 895–901

    CAS  PubMed  Google Scholar 

  30. Barrett-Connor E. Lower endogenous androgen levels and dyslipidemia in men with non-insulin-dependent diabetes mellitus. Ann Intern Med 1992; 117: 807–11

    CAS  PubMed  Google Scholar 

  31. Andersson B, Marin P, Lissner L, et al. Testosterone concentrations in women and men with NIDDM. Diabetes Care 1994; 17: 405–11

    Article  CAS  PubMed  Google Scholar 

  32. Dhindsa S, Prabhakar S, Sethi M, et al. Frequent occurrence of hypogonadotropic hypogonadism in type 2 diabetes. J Clin Endocrinol Metab 2004; 89: 5462–8

    Article  CAS  PubMed  Google Scholar 

  33. Kapoor D, Aldred H, Jones TH, et al. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. Diabetes Care 2007; 30: 911–7

    Article  CAS  PubMed  Google Scholar 

  34. Dockery F, Bulpitt CJ, Agarwal S, et al. Testosterone suppression in men with prostate cancer leads to an increase in arterial stiffness and hyperinsulinaemia. Clin Sci (Lond) 2003; 104: 195–201

    Article  CAS  Google Scholar 

  35. Smith JC, Bennett S, Evans LM, et al. The effects of induced hypogonadism on arterial stiffness, body composition and metabolic parameters in males with prostate cancer. J Clin Endocrinol Metab 2001; 86: 4261–7

    Article  CAS  PubMed  Google Scholar 

  36. Xu T, Wang X, Hou S, et al. Effect of surgical castration on risk factors for arteriosclerosis of patients with prostate cancer. Chin Med J (Engl) 2002; 115: 1336–40

    Google Scholar 

  37. Basaria S, Muller DC, Carducci MA, et al. Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen-deprivation therapy. Cancer 2006; 106: 581–8

    Article  CAS  PubMed  Google Scholar 

  38. Keating NL, O’Malley J, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol 2006; 24: 4448–56

    Article  CAS  PubMed  Google Scholar 

  39. Stellate RK, Feldman HA, Hamdy O, et al. Testosterone, sex hormone binding globulin and the development of type 2 diabetes in middle aged men: prospective results from the Massachusetts Male Aging Study. Diabetes Care 2000; 23: 490–4

    Article  Google Scholar 

  40. Haffner SM, Shaten J, Stern MP, et al. Low levels of sex hormone binding globulin and testosterone predict the development of non-insulin-dependent diabetes mellitus in men. Am J Epidemiol 1996; 143: 889–97

    Article  CAS  PubMed  Google Scholar 

  41. Oh JY, Barrett-Connor E, Wedick NM, et al. Endogenous sex hormones and the development of type 2 diabetes in older men and women: the Rancho Bernardo Study. Diabetes Care 2002; 25: 55–60

    Article  CAS  PubMed  Google Scholar 

  42. Holmang A, Bjorntorp P. The effects of testosterone on insulin sensitivity in male rats. Acta Physiologica Scandinavica 1992; 146: 505–10

    Article  CAS  PubMed  Google Scholar 

  43. Simon D, Charles MA, Lahlou N, et al. Androgen therapy improves insulin sensitivity and decreases leptin level in healthy adult men with low plasma total testosterone. Diabetes Care 2001; 24: 2149–51

    Article  CAS  PubMed  Google Scholar 

  44. Marin P, Krotkiewski M, Bjorntorp P. Androgen treatment of middle-aged, obese men: effects on metabolism, muscle and adipose tissues. Eur J Med 1992; 1: 329–36

    CAS  PubMed  Google Scholar 

  45. Marin P, Holmang S, Jonsson L, et al. The effects of testosterone treatment on body composition and metabolism in middle-aged obese men. Int J Obes Relat Metab Disord 1992; 16: 991–7

    CAS  PubMed  Google Scholar 

  46. Malkin CJ, Jones TH, Channer KS. The effect of testosterone on insulin sensitivity in men with heart failure. Eur J Heart Fail 2006; 9: 44–50

    Article  PubMed  CAS  Google Scholar 

  47. Singh AB, Hsia S, Alaupovic P, et al. The effects of varying doses of testosterone on insulin sensitivity, plasma lipids, apolipoproteins and C-reactive protein in healthy young men. J Clin Endocrinol Metab 2002; 87: 136–43

    Article  CAS  PubMed  Google Scholar 

  48. Page ST, Amory JK, Bowman FD, et al. Exogenous testosterone (T) alone or with finasteride increases physical performance, grip strength, and lean body mass in older men with low serum T. J Clin Endocrinol Metab 2005; 90(3): 1502–10

    Article  CAS  PubMed  Google Scholar 

  49. Boyanov MA, Boneva Z, Christov VG. Testosterone supplementation in men with type 2 diabetes, visceral obesity and partial androgen deficiency. Aging Male 2003; 6: 1–7

    CAS  PubMed  Google Scholar 

  50. Corrales JJ, Burgo RM, Garca-Berrocal B, et al. Partial androgen deficiency in aging type 2 diabetic men and its relationship to glycemic control. Metabolism 2004; 53: 666–72

    Article  CAS  PubMed  Google Scholar 

  51. Kapoor D, Goodwin E, Jones TH, et al. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolemia in hypogonadal men with type 2 diabetes. Eur J Endocrinol 2006; 154:899–906

    Article  CAS  PubMed  Google Scholar 

  52. Marin P, Arver S. Androgens and abdominal obesity. Baillieres Clin Endocrinol Metab 1998; 12: 441–51

    Article  CAS  PubMed  Google Scholar 

  53. Zumoff B, Strain GW, Miller LK, et al. Plasma free and non sex-hormone-binding-globulin-bound testosterone are decreased in obese men in proportion to their degree of obesity. J Clin Endocrinol Metab 1990; 71: 929–31

    Article  CAS  PubMed  Google Scholar 

  54. Pasquali R, Casimirri F, Cantobelli S, et al. Effect of obesity and body fat distribution on sex hormones and insulin in men. Metabolism 1991; 40: 101–4

    Article  CAS  PubMed  Google Scholar 

  55. Kley HK, Edelmann P, Kruskemper HL. Relationship of plasma sex hormones to different parameters of obesity in male subjects. Metabolism 1980; 29: 1041–5

    Article  CAS  PubMed  Google Scholar 

  56. Haffner SM, Valdez RA, Stern MP, et al. Obesity, body fat distribution and sex hormones in men. Int J Obes 1993; 17: 643–9

    CAS  Google Scholar 

  57. Seidell JC, Bjorntorp P, Sjostrom L, et al. Visceral fat accumulation in men is positively associated with insulin, glucose and C-peptide levels but negatively with testosterone levels. Metabolism 1990; 39: 897–901

    Article  CAS  PubMed  Google Scholar 

  58. Phillips GB. Relationships in men of sex hormones, insulin, adiposity, and risk factors for myocardial infarction. Metabolism 2003; 52: 784–90

    Article  CAS  PubMed  Google Scholar 

  59. Vermeulen A, Goemaere S, Kaufman JM. Testosterone, body composition and aging. J Endocrinol Invest 1999; 22: 110–6

    CAS  PubMed  Google Scholar 

  60. Strain GW, Zumoff B, Miller LK, et al. Effect of massive weight loss on hypothalamic- pituitary-gonadal function in obese men. J Clin Endocrinol Metab 1988; 66: 1019–23

    Article  CAS  PubMed  Google Scholar 

  61. Kapoor D, Malkin CJ, Channer KS, et al. Androgens, insulin resistance and vascular disease in men. Clin Endocrinol (Oxf) 2005; 63: 239–50

    Article  CAS  Google Scholar 

  62. Niskanen L, Laaksonen DE, Punnonen K, et al. Changes in sex hormone-binding globulin and testosterone during weight loss and weight maintenance in abdominally obese men with the metabolic syndrome. Diabetes Obes Metab 2004; 6: 208–15

    Article  CAS  PubMed  Google Scholar 

  63. Rebuffe-Scrive M, Marin P, Bjorntorp P. Effect of testosterone on abdominal adipose tissue in men. Int J Obes 1991; 15: 791–5

    CAS  PubMed  Google Scholar 

  64. Snyder PJ, Peachey H, Hannoush P, et al. Effect of testosterone treatment on body composition and muscle strength in men over 65 years of age. J Clin Endocrinol Metab 1999; 84: 2647–53

    Article  CAS  PubMed  Google Scholar 

  65. Kenny AM, Prestwood KM, Gruman CA, et al. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels. J Gerontol A Biol Sci Med Sci 2001; 56: M266–72

    Article  CAS  PubMed  Google Scholar 

  66. Cohen PG. The hypogonadal-obesity cycle. Med Hypotheses 1999; 52: 49–51

    Article  CAS  PubMed  Google Scholar 

  67. Jones TH. Testosterone associations with erectile dysfunction, diabetes and the metabolic syndrome. Eur Urol (Suppl) 2007; 6: 847–57

    Article  CAS  Google Scholar 

  68. Bjorntorp P. The regulation of adipose tissue distribution in humans. Int J Obes Relat Metab Disord 1996; 20: 291–302

    CAS  PubMed  Google Scholar 

  69. Marin P, Oden B, Bjorntorp P. Assimilation and mobilization of triglycerides in subcutaneous abdominal and femoral adipose tissue in vivo in men: effects of androgens. J Clin Endocrinol Metab 1995; 80: 239–43

    Article  CAS  PubMed  Google Scholar 

  70. Guay AT, Bansal S, Heatley GJ. Effect of raising endogenous testosterone levels in impotent men with secondary hypogonadism: double-blind placebo-controlled trial with clomiphene citrate. J Clin Endocrinol Metab 1995; 80: 3546–52

    Article  CAS  PubMed  Google Scholar 

  71. Mantzoros CS. The role of leptin in human obesity and disease: a review of current evidence. Ann Intern Med 1999; 130: 671–80

    CAS  PubMed  Google Scholar 

  72. Isidori AM, Caprio M, Strollo F, et al. Leptin and androgens in male obesity: evidence for leptin contribution to reduced androgen levels. J Clin Endocrinol Metab 1999; 84: 3673–80

    Article  CAS  PubMed  Google Scholar 

  73. Jones TH, Kennedy RL. Cytokines and hypothalamic-pituitary function. Cytokine 2003; 5: 531–8

    Article  Google Scholar 

  74. Pittas AG, Joseph NA, Greenburg AS. Adipocytokines and insulin resistance. J Clin Endocrinol Metab 2004; 89: 447–52

    Article  CAS  PubMed  Google Scholar 

  75. Dai WS, Gutai JP, Kuller LH, et al. Relation between plasma high-density lipoprotein cholesterol and sex hormone concentrations in men. Am J Cardiol 1984; 53: 1259–63

    Article  CAS  PubMed  Google Scholar 

  76. Heller RF, Wheeler MJ, Micallef J, et al. Relationship of high density lipoprotein cholesterol with total and free testosterone and sex hormone binding globulin. Acta Endocrinologica 1983; 104: 253–6

    CAS  PubMed  Google Scholar 

  77. Hromadova M, Hacik T, Malatinsky E, et al. Alterations of lipid metabolism in men with hypotestosteronemia. Horm Metab Res 1991; 32: 392–4

    Article  Google Scholar 

  78. Simon D, Charles MA, Nahoul K, et al. Association between plasma total testosterone and cardiovascular risk factors in healthy adult men: the Telecom Study. J Clin Endocrinol Metab 1997; 82: 682–5

    Article  CAS  PubMed  Google Scholar 

  79. Haffner SM, Mykkanen L, Valdez RA, et al. Relationship of sex hormones to lipids and lipoproteins in non-diabetic men. J Clin Endocrinol Metab 1993; 77: 1610–5

    Article  CAS  PubMed  Google Scholar 

  80. Denti L, Pasolini G, Sanfelici L, et al. Aging-related decline of gonadal function in healthy men: correlation with body composition and lipoproteins. j Am Geriatr Soc 2000; 48: 51–8

    CAS  PubMed  Google Scholar 

  81. Kiel DP, Bacon JA, Plymate SR, et al. Sex hormones and lipoproteins in men. Am J Med 1989; 87: 35–9

    Article  CAS  PubMed  Google Scholar 

  82. Zmuda JM, Cauley JA, Kriska A, et al. Longitudinal relation between endogenous testosterone and cardiovascular disease risk factors in middle-aged men: a 13-year follow-up of former Multiple Risk Factor Intervention Trial participants. Am J Epidemiol 1997; 146: 609–17

    Article  CAS  PubMed  Google Scholar 

  83. Zgliczynski S, Ossowski M, Slowinska-Srzednicka J, et al. Effect of testosterone replacement therapy on lipids and lipoproteins in hypogonadal and elderly men. Atherosclerosis 1996; 121: 35–43

    Article  CAS  PubMed  Google Scholar 

  84. Tripathy D, Shah P, Lakshmy R, et al. Effect of testosterone replacement on whole body glucose utilisation and other cardiovascular risk factors in males with idiopathic hypogonadotrophic hypogonadism. Horm Metab Res 1998; 30: 642–5

    Article  CAS  PubMed  Google Scholar 

  85. Uyanik BS, Ari Z, Gumus B, et al. Beneficial effects of testosterone undecanoate on the lipoprotein profiles in healthy elderly men: a placebo-controlled study. Jpn Heart J 1997; 38: 73–82

    Article  CAS  PubMed  Google Scholar 

  86. Jockenhovel F, Bullmann C, Schubert M, et al. Influence of various modes of androgen substitution on serum lipids and lipoproteins in hypogonadal men. Metabolism 1999; 48: 590–6

    Article  CAS  PubMed  Google Scholar 

  87. Malkin CJ, Pugh PJ, Kapoor D, et al. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab 2004; 89: 3313–8

    Article  CAS  PubMed  Google Scholar 

  88. Whitsel EA, Boyko EJ, Matsumoto AM, et al. Intramuscular testosterone esters and plasma lipids in hypogonadal men: a meta-analysis. Am J Med 2001; 111: 261–9

    Article  CAS  PubMed  Google Scholar 

  89. Thompson PD, Cullinane EM, Sady SP, et al. Contrasting effects of testosterone and stanozolol on serum lipoprotein levels. JAMA 1989; 261: 1165–8

    Article  CAS  PubMed  Google Scholar 

  90. Dobs AS, Bachorik PS, Arver S, et al. Interrelationships among lipoprotein levels, sex hormones, anthropometric parameters, and age in hypogonadal men treated for 1 year with a permeation-enhanced testosterone transdermal system. J Clin Endocrinol Metab 2001; 86: 1026–33

    Article  CAS  PubMed  Google Scholar 

  91. Van Pottelbergh I, Braeckman L, De Bacquer D, et al. Differential contribution of testosterone and estradiol in the determination of cholesterol and lipoprotein profile in healthy middle-aged men. Atherosclerosis 2003; 166: 95–102

    Article  PubMed  Google Scholar 

  92. Stanworth RD, Kapoor D, Channer KS, et al. Testosterone levels correlate positively with HDL cholesterol levels in men with type 2 diabetes. Endocr Abstr 2007; 14: P628

    Google Scholar 

  93. Phillips GB, Jing TY, Resnick LM, et al. Sex hormones and haemostatic risk factors for coronary heart disease in men with hypertension. J Hypertens 1993; 11: 699–702

    Article  CAS  PubMed  Google Scholar 

  94. Pugh PJ, Jones TH, Channer KS. Acute haemodynamic effects of testosterone in men with chronic heart failure. Eur Heart J 2003; 24: 909–15

    Article  CAS  PubMed  Google Scholar 

  95. Phillips GB, Jing TY, Laragh JH, et al. Serum sex hormone levels and renin-sodium profile in men with hypertension. Am J Hypertens 1995; 8: 626–9

    Article  CAS  PubMed  Google Scholar 

  96. Glueck CJ, Glueck HI, Stroop D, et al. Endogenous testosterone, fibrinolysis, and coronary artery disease risk in hyperlipidemic men. J Lab Clin Med 1993; 122: 412–20

    CAS  PubMed  Google Scholar 

  97. Phillips GB, Pinkerneil BH, Jing TY. The association of hypotestosteronaemia with coronary artery disease in men. Arterioscler Thromb 1994; 14: 701–6

    Article  CAS  PubMed  Google Scholar 

  98. Pugh PJ, Channer KS, Parry H, et al. Bioavailable testosterone levels fall acutely following myocardial infarction in men: association with fibrinolytic factors. Endocr Res 2002; 28: 161–73

    Article  CAS  PubMed  Google Scholar 

  99. Caron P, Bennet A, Camare R, et al. Plasminogen activator inhibitor in plasma is related to testosterone in men. Metabolism 1989; 38: 1010–5

    Article  CAS  PubMed  Google Scholar 

  100. Beer NA, Jakubowicz DJ, Matt DW, et al. Dehydroepiandrosterone reduces plasma plasminogen activator inhibitor type 1 and tissue plasminogen activator antigen in men. Am J Med Sci 1996; 311: 205–10

    Article  CAS  PubMed  Google Scholar 

  101. Smith AM, English KM, Malkin CJ, et al. Testosterone does not adversely affect fibrinogen or tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) levels in 46 men with chronic stable angina. Eur J Endocrinol 2005; 152: 285–91

    Article  CAS  PubMed  Google Scholar 

  102. Yang XC, Jing TY, Resnick LM, et al. Relation of hemostatic risk factors to other risk factors for coronary heart disease and to sex hormones in men. Arterioscler Thromb 1993; 13: 467–71

    Article  CAS  PubMed  Google Scholar 

  103. De Pergola G, De Mitrio V, Sciaraffia M, et al. Lower androgenicity is associated with higher plasma levels of prothrombotic factors irrespective of age, obesity, body fat distribution, and related metabolic parameters in men. Metabolism 1997; 46: 1287–93

    Article  PubMed  Google Scholar 

  104. Anderson RA, Ludlam CA, Wu FC. Haemostatic effects of suprapraphysiological levels of testosterone in normal men. Thromb Haemost 1995; 74: 693–7

    CAS  PubMed  Google Scholar 

  105. Hak AE, Witteman JCM, De Jong FH, et al. Low levels of endogenous androgens increase the risk of atherosclerosis in elderly men: the Rotterdam Study. J Clin Endocrinol Metab 2002; 87: 3632–9

    Article  CAS  PubMed  Google Scholar 

  106. Bruck B, Brehme U, Gugel N, et al. Gender-specific differences in the effects of testosterone and estrogen on the development of atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 1997; 17: 2192–9

    Article  CAS  PubMed  Google Scholar 

  107. Larsen BA, Nordestgaard BG, Stender S, et al. Effect of testosterone on atherogenesis in cholesterol-fed rabbits with similar plasma cholesterol levels. Atherosclerosis 1993; 99: 79–86

    Article  CAS  PubMed  Google Scholar 

  108. Alexandersen P, Haarbo J, Byrjalsen I, et al. Natural androgens inhibit male atherosclerosis. Circ Res 1999; 84: 813–9

    Article  CAS  PubMed  Google Scholar 

  109. Nettleship JE, Jones TH, Channer KS, et al. Physiological testosterone replacement therapy attenuates fatty streak formation and improves high-density lipoprotein cholesterol in the Tfm mouse: an independent effect of the classic androgen receptor. Circulation 2007; 116: 2427–34

    Article  CAS  PubMed  Google Scholar 

  110. Cutolo M, Villaggio B, Foppiani L, et al. The hypothalamicpituitary-adrenal and gonadal axes in rheumatoid arthritis. Ann N Y Acad Sci 2000; 917: 835–43

    Article  CAS  PubMed  Google Scholar 

  111. Jones RD, Nettleship JE, Kapoor D, et al. Testosterone and atherosclerosis in aging men: purported association and clinical implications. Am J Cardiovasc Drugs 2005; 5: 141–54

    Article  CAS  PubMed  Google Scholar 

  112. Corrales JJ, Almeida M, Burgo R, et al. Androgen-replacement therapy depresses the ex vivo production of inflammatory cytokines by circulating antigen-presenting cells in aging type-2 diabetic men with partial androgen deficiency. J Endocrinol 2006; 189: 595–604

    Article  CAS  PubMed  Google Scholar 

  113. Kapoor D, Clarke S, Jones TH, et al. The effect of testosterone replacement therapy on adipocytokines and C-reactive protein in hypogonadal men with type 2 diabetes. Eur J Endocrinol 2007; 156(5): 595–602

    Article  CAS  PubMed  Google Scholar 

  114. Van den Beld AW, Bots ML, Janssen JA, et al. Endogenous hormones and carotid atherosclerosis in elderly men. Am J Epidemiol 2003; 157: 25–31

    Article  PubMed  Google Scholar 

  115. Muller M, Van Den Beld AW, Bots ML, et al. Endogenous sex hormones and progression of carotid atherosclerosis in elderly men. Circulation 2004; 109: 2074–9

    Article  CAS  PubMed  Google Scholar 

  116. De Pergola G, Pannacciulli N, Ciccone M, et al. Free testosterone plasma levels are negatively associated with the intimamedia thickness of the common carotid artery in overweight and obese glucose-tolerant young adult men. Int J Obes Relat Metab Disord 2003; 27: 803–7

    Article  PubMed  CAS  Google Scholar 

  117. Fukui M, Kitagawa Y, Nakamura N, et al. Association between serum testosterone concentration and carotid atherosclerosis in men with type 2 diabetes. Diabetes Care 2003; 26: 1869–73

    Article  CAS  PubMed  Google Scholar 

  118. Svartberg J, Von Muhlen D, Mathiesen E, et al. Low testosterone levels are associated with carotid atherosclerosis in men. J Intern Med 2006; 259(6): 576–82

    Article  CAS  PubMed  Google Scholar 

  119. Liu PY, Death AK, Handelsman DJ. Androgens and cardiovascular disease. Endocr Rev 2003; 24: 313–40

    Article  CAS  PubMed  Google Scholar 

  120. Wu FCW, Eckardstein AV. Androgens and coronary artery disease. Endocr Rev 2003; 24: 183–217

    Article  CAS  PubMed  Google Scholar 

  121. English KM, Mandour O, Steeds RP, et al. Men with coronary artery disease have lower levels of androgens than men with normal coronary angiograms. Eur Heart J 2000; 21: 890–4

    Article  CAS  PubMed  Google Scholar 

  122. Pugh PJ, Morris PD, Hall J, et al. High prevalence of low testosterone levels in men with coronary heart disease and an association with hypertension and obesity. Endocr Abstr 2003; 5: P225

    Google Scholar 

  123. Webb CM, McNeill JG, Hayward CS, et al. Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation 1999; 100: 1690–6

    Article  CAS  PubMed  Google Scholar 

  124. English KM, Steeds RP, Jones TH, et al. Low dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina. Circulation 2000; 102: 1906–11

    Article  CAS  PubMed  Google Scholar 

  125. Pugh PJ, Jones RD, West JN, et al. Testosterone treatment for men with chronic heart failure. Heart 2004; 90: 446–7

    Article  CAS  PubMed  Google Scholar 

  126. Hall J, Jones RD, Jones TH, et al. Selective inhibition of L-type Ca2+ channels in A7r5 cells by physiological levels of testosterone. Endocrinology 2006; 147(6): 2675–80

    Article  CAS  PubMed  Google Scholar 

  127. Nieschlag E, Behre HM, Bouchard P, et al. Testosterone replacement therapy: current trends and future directions. Hum Reprod Update 2004; 5: 409–11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this article. Professor Jones has acted as a consultant to Beaufour Ipsen Pharma and received honoraria from Schering Healthcare, Ardana Bioscience and ProStrakan. Dr Kapoor has no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hugh Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapoor, D., Jones, T.H. Androgen Deficiency as a Predictor of Metabolic Syndrome in Aging Men. Drugs Aging 25, 357–369 (2008). https://doi.org/10.2165/00002512-200825050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200825050-00001

Keywords

Navigation