Skip to main content

Advertisement

Log in

Pharmacokinetic Changes of Psychotropic Drugs in Patients with Liver Disease

Implications for Dose Adaptation

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Dose adjustment of psychotropic drugs in patients with liver cirrhosis may be important as most of these drugs are predominantly eliminated by the liver and many of them are associated with dose-dependent adverse reactions. As no surrogate parameter is available to predict hepatic metabolism of drugs, dose adjustment according to pharmacokinetic properties of the drugs is proposed. Psychotropic drugs (antiepileptics, antiparkinsonian drugs, psycholeptics such as antipsychotics, anxiolytics, sedatives and hypnosedatives, and psychoanaleptics such as antidepressants, psychostimulants and antidementia drugs) marketed in Switzerland in 2006 were therefore classified according to their hepatic extraction and/or bioavailability to predict their kinetic behaviour in patients with cirrhosis. The expected changes in hepatic metabolism predicted by pharmacokinetic properties were compared with the results from kinetic studies carried out in patients with liver disease. These studies were identified using MEDLINE searches.

Of the 116 psychotropic drugs available on the Swiss market by the year 2006, only 12 were predominantly eliminated through the kidney. For five substances, no Q0 value (the dose fraction metabolized or excreted extrarenally) could be determined because of lack of pharmacokinetic data. Of 99 drugs with predominant hepatic metabolism, 29.3% were categorized as high, 25.2% as intermediate and 38.4% as low extraction drugs, while seven substances could not be classified. Pharmacokinetic studies in patients with liver disease were available for 55 of these 99 drugs eliminated predominantly by the liver (Q0-value ≥ 0.5). Only a few kinetic studies in patients with liver disease were found for antipsychotics, antiparkinsonian drugs and antidepressants, except for selective serotonin reuptake inhibitors and some newer antidepressants. The expected changes in pharmacokinetics were generally in good agreement with the changes reported in pharmacokinetic studies. For 12 drugs, the observed changes in pharmacokinetics from clinical studies were different from the changes expected based on their classification. However, for low extraction drugs metabolized by cytochrome P450 isozymes, clearance may be reduced by up to 50%.

In conclusion, the classification of drugs according to their hepatic extraction and/or bioavailability is a useful tool for dose adjustment, if information from clinical studies is lacking. There is a gap in information about pharmacokinetic changes in patients with liver cirrhosis for a large number of centrally acting drugs. Kinetic studies for centrally acting drugs with predominant hepatic metabolism should be carried out in patients with liver disease to allow precise dose recommendations for enhanced patient safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

References

  1. McLean AJ, Morgan DJ. Clinical pharmacokinetics in patients with liver disease. Clin Pharmacokinet 1991 Jul; 21(1): 42–69

    Article  PubMed  CAS  Google Scholar 

  2. Morgan DJ, McLean AJ. Clinical pharmacokinetic and pharmacodynamic considerations in patients with liver disease: an update. Clin Pharmacokinet 1995 Nov; 29(5): 370–91

    Article  PubMed  CAS  Google Scholar 

  3. Williams RL, Mamelok RD. Hepatic disease and drug pharmacokinetics. Clin Pharmacokinet 1980 Nov–Dec; 5(6): 528–47

    Article  PubMed  CAS  Google Scholar 

  4. Delco F, Tchambaz L, Schlienger R, et al. Dose adjustment in patients with liver disease. Drug Saf 2005; 28(6): 529–45

    Article  PubMed  CAS  Google Scholar 

  5. Herbert MF. Guide to drug dosage in hepatic disease. In: Holford NHG, editor. Drug data handbook. 3rd ed. Auckland: Adis International, 1998: 179

    Google Scholar 

  6. Westphal JF, Brogard JM. Drug administration in chronic liver disease. Drug Saf 1997 Jul; 17(1): 47–73

    Article  PubMed  CAS  Google Scholar 

  7. Verbeeck RK, Horsmans Y. Effect of hepatic insufficiency on pharmacokinetics and drug dosing. Pharm World Sci 1998 Oct; 20(5): 183–92

    Article  PubMed  CAS  Google Scholar 

  8. Rodighiero V. Effects of liver disease on pharmacokinetics: an update. Clin Pharmacokinet 1999 Nov; 37(5): 399–431

    Article  PubMed  CAS  Google Scholar 

  9. Tchambaz L, Schlatter C, Jakob M, et al. Dose adaptation of antineoplastic drugs in patients with liver disease. Drug Saf 2006; 29(6): 509–22

    Article  PubMed  CAS  Google Scholar 

  10. Blendis L, Wong F. The hyperdynamic circulation in cirrhosis: an overview. Pharmacol Ther 2001 Mar; 89(3): 221–31

    Article  PubMed  CAS  Google Scholar 

  11. Krahenbuhl S, Marti U, Grant I, et al. Characterization of mechanisms causing hypoalbuminemia in rats with long-term bile duct ligation. J Hepatol 1995 Jul; 23(1): 79–86

    Article  PubMed  CAS  Google Scholar 

  12. Butler JM, Begg EJ. Free drug metabolic clearance in elderly people. Clin Pharmacokinet 2008; 47(5): 297–321

    Article  PubMed  CAS  Google Scholar 

  13. Crone CC, Gabriel GM, DiMartini A. An overview of psychiatric issues in liver disease for the consultationliaison psychiatrist. Psychosomatics 2006 May–Jun; 47(3): 188–205

    Article  PubMed  Google Scholar 

  14. Lucena MI, Andrade RJ, Tognoni G, et al. Drug use for non-hepatic associated conditions in patients with liver cirrhosis. Eur J Clin Pharmacol 2003 May; 59(1): 71–6

    PubMed  Google Scholar 

  15. Morgan MH, Read AE. Antidepressants and liver disease. Gut 1972 Sep; 13(9): 697–701

    Article  PubMed  CAS  Google Scholar 

  16. Documed AG. Arzneimittelkompendium der Schweiz [online]. Available from: http://www.kompendium.ch [Accessed 2009 Mar 16]

  17. Murray L. editor. Physicians’ desk reference (PDR). 59th ed. Montvale (NJ): Thomson PDR, 2005

    Google Scholar 

  18. Dollery C. editor. Therapeutic drugs. 2nd ed. Edinburgh: Churchill Livingstone, 1999

    Google Scholar 

  19. Thomson Healthcare. Micromedex(R) healthcare series [online]. Available from: http://www.thomsonhc.com [Accessed 2009 Mar 16]

  20. Speight TM, Holford NHG, editors. Avery’s drug treatment. 4th ed. Auckland: Adis International, 1997

    Google Scholar 

  21. Thummel KE, Shen DD, Isoherranen N, et al. Design and optimization of dosage regimens: pharmacokinetic data. In: Brunton LL, editor. Goodman & Gilman’s: the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill, 2006

    Google Scholar 

  22. Zimmerman HJ. Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver. 2nd ed. Philadelphia (PA): Lippincott Williams & Wilkins, 1999

    Google Scholar 

  23. Bénichou C, editor. Adverse drug reactions: a practical guide to diagnosis and management. Chichester: John Wiley & Sons Ltd, 1994

    Google Scholar 

  24. Bircher J, Sommer W. Klinisch-pharmakologische Datensammlung. 2. Auflage ed. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH, 1999

    Google Scholar 

  25. Buckley PF. Receptor-binding profiles of antipsychotics: clinical strategies when switching between agents. J Clin Psychiatry 2007; 68 Suppl. 6: 5–9

    PubMed  CAS  Google Scholar 

  26. Trindade E, Menon D, Topfer LA, et al. Adverse effects associated with selective serotonin reuptake inhibitors and tricyclic antidepressants: a meta-analysis. CMAJ 1998 Nov 17; 159(10): 1245–52

    PubMed  CAS  Google Scholar 

  27. Nisoli E, Carruba MO. An assessment of the safety and efficacy of sibutramine, an anti-obesity drug with a novel mechanism of action. Obes Rev 2000 Oct; 1(2): 127–39

    Article  PubMed  CAS  Google Scholar 

  28. Hvidberg EF, Dam M. Clinical pharmacokinetics of anticonvulsants. Clin Pharmacokinet 1976; 1(3): 161–88

    Article  PubMed  CAS  Google Scholar 

  29. Bachmann K, He Y, Sarver JG, et al. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of ethosuximide by human hepatic microsomal enzymes. Xenobiotica 2003 Mar; 33(3): 265–76

    Article  PubMed  CAS  Google Scholar 

  30. Seree EJ, Pisano PJ, Placidi M, et al. Identification of the human and animal hepatic cytochromes P450 involved in clonazepam metabolism. Fundam Clin Pharmacol 1993; 7(2): 69–75

    Article  PubMed  CAS  Google Scholar 

  31. May TW, Korn-Merker E, Rambeck B. Clinical pharmacokinetics of oxcarbazepine. Clin Pharmacokinet 2003; 42(12): 1023–42

    Article  PubMed  CAS  Google Scholar 

  32. DeVane CL. Pharmacokinetics drug interactions, and tolerability of valproate. Psychopharmacol Bull 2003; 37 Suppl. 2: 25–42

    PubMed  Google Scholar 

  33. Lau AH, Gustavson LE, Sperelakis R, et al. Pharmacokinetics and safety of tiagabine in subjects with various degrees of hepatic function. Epilepsia 1997 Apr; 38(4): 445–51

    Article  PubMed  CAS  Google Scholar 

  34. Deleu D, Northway MG, Hanssens Y. Clinical pharma-cokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin Pharmacokinet 2002; 41(4): 261–309

    Article  PubMed  CAS  Google Scholar 

  35. Kvernmo T, Hartter S, Burger E. A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Ther 2006 Aug; 28(8): 1065–78

    Article  PubMed  CAS  Google Scholar 

  36. Taavitsainen P, Anttila M, Nyman L, et al. Selegiline metabolism and cytochrome P450 enzymes: in vitro study in human liver microsomes. Pharmacol Toxicol 2000 May; 86(5): 215–21

    Article  PubMed  CAS  Google Scholar 

  37. Yoshii K, Kobayashi K, Tsumuji M, et al. Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes. Life Sci 2000; 67(2): 175–84

    Article  PubMed  CAS  Google Scholar 

  38. Wojcikowski J, Pichard-Garcia L, Maurel P, et al. Contribution of human cytochrome p-450 isoforms to the metabolism of the simplest phenothiazine neuro-leptic promazine. Br J Pharmacol 2003 Apr; 138(8): 1465–74

    Article  PubMed  CAS  Google Scholar 

  39. Mauri MC, Volonteri LS, Colasanti A, et al. Clinical pharmacokinetics of atypical antipsychotics: a critical review of the relationship between plasma concentrations and clinical response. Clin Pharmacokinet 2007; 46(5): 359–88

    Article  PubMed  CAS  Google Scholar 

  40. Eiermann B, Engel G, Johansson I, et al. The involvement of CYP1A2 and CYP3A4 in the metabolism of clozapine. Br J Clin Pharmacol 1997 Nov; 44(5): 439–46

    Article  PubMed  CAS  Google Scholar 

  41. DeVane CL, Nemeroff CB. Clinical pharmacokinetics of quetiapine: an atypical antipsychotic. Clin Pharmacokinet 2001; 40(7): 509–22

    Article  PubMed  CAS  Google Scholar 

  42. Caccia S. Biotransformation of post-clozapine antipsychotics: pharmacological implications. Clin Pharmacokinet 2000 May; 38(5): 393–14

    Article  PubMed  CAS  Google Scholar 

  43. Sporkert F, Augsburger M, Giroud C, et al. Determination and distribution of clotiapine (Entumine) in human plasma, post-mortem blood and tissue samples from clotia-pine-treated patients and from autopsy cases. Forensic Sci Int 2007 Aug 6; 170(2-3): 193–9

    Article  PubMed  CAS  Google Scholar 

  44. Venkatakrishnan K, Greenblatt DJ, Von Moltke LL, et al. Alprazolam is another substrate for human cytochrome P450-3A isoforms [letter]. J Clin Psychopharmacol 1998 Jun; 18(3): 256

    Article  PubMed  CAS  Google Scholar 

  45. Simons FE, Watson WT, Chen XY, et al. The pharmacokinetics and pharmacodynamics of hydroxyzine in patients with primary biliary cirrhosis. J Clin Pharmacol 1989 Sep; 29(9): 809–15

    PubMed  CAS  Google Scholar 

  46. Kilicarslan T, Haining RL, Rettie AE, et al. Flunitrazepam metabolism by cytochrome P450S 2C19 and 3A4. Drug Metab Dispos 2001 Apr; 29 (4 Pt 1): 460–5

    PubMed  CAS  Google Scholar 

  47. Von Moltke LL, Greenblatt DJ, Harmatz JS, et al. Triazolam biotransformation by human liver microsomes in vitro: effects of metabolic inhibitors and clinical confirmation of a predicted interaction with ketoconazole. J Pharmacol Exp Ther 1996 Feb; 276(2): 370–9

    Google Scholar 

  48. Hellstern A, Hildebrand M, Humpel M, et al. Minimal biliary excretion and enterohepatic recirculation of lormetazepam in man as investigated by a new nasobiliary drainage technique. Int J Clin Pharmacol Ther Toxicol 1990 Jun; 28(6): 256–61

    PubMed  CAS  Google Scholar 

  49. Gaillot J, Le Roux Y, Houghton GW, et al. Critical factors for pharmacokinetics of zopiclone in the elderly and in patients with liver and renal insufficiency. Sleep 1987; 10 Suppl. 1: 7–21

    PubMed  Google Scholar 

  50. Langtry HD, Benfield P. Zolpidem: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential. Drugs 1990 Aug; 40(2): 291–313

    Article  PubMed  CAS  Google Scholar 

  51. Akutsu T, Kobayashi K, Sakurada K, et al. Identification of human cytochrome p450 isozymes involved in diphenhydramine N-demethylation. Drug Metab Dispos 2007 Jan; 35(1): 72–8

    Article  PubMed  CAS  Google Scholar 

  52. Ganes DA, Midha KK. Identification in in vivo acetylation pathway for N-dealkylated metabolites of doxylamine in humans. Xenobiotica 1987 Aug; 17(8): 993–9

    Article  PubMed  CAS  Google Scholar 

  53. Koyama E, Chiba K, Tani M, et al. Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther 1997 Jun; 281(3): 1199–210

    PubMed  CAS  Google Scholar 

  54. Eap CB, Bender S, Gastpar M, et al. Steady state plasma levels of the enantiomers of trimipramine and of its metabolites in CYP2D6-, CYP2C19- and CYP3A4/5-phenotyped patients. Ther Drug Monit 2000 Apr; 22(2): 209–14

    Article  PubMed  CAS  Google Scholar 

  55. Knapp DR, Gaffney TE, McMahon RE, et al. Studies of human urinary and biliary metabolites of nortriptyline with stable isotope labeling. J Pharmacol Exp Ther 1972 Mar; 180(3): 784–90

    PubMed  CAS  Google Scholar 

  56. Brachtendorf L, Jetter A, Beckurts KT, et al. Cytochrome P450 enzymes contributing to demethylation of maprotiline in man. Pharmacol Toxicol 2002 Mar; 90(3): 144–9

    Article  PubMed  CAS  Google Scholar 

  57. Grasmader K, Verwohlt PL, Rietschel M, et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 2004 Jul; 60(5): 329–36

    Article  PubMed  CAS  Google Scholar 

  58. DeVane CL, Liston HL, Markowitz JS. Clinical pharma-cokinetics of sertraline. Clin Pharmacokinet 2002; 41(15): 1247–66

    Article  PubMed  CAS  Google Scholar 

  59. Rao N. The clinical pharmacokinetics of escitalopram. Clin Pharmacokinet 2007; 46(4): 281–90

    Article  PubMed  CAS  Google Scholar 

  60. Bonnet U. Moclobemide: evolution, pharmacodynamic, and pharmacokinetic properties. CNS Drug Rev 2002 Fall; 8(3): 283–308

    Article  PubMed  CAS  Google Scholar 

  61. Mihara K, Otani K, Tybring G, et al. The CYP2D6 genotype and plasma concentrations of mianserin enantiomers in relation to therapeutic response to mianserin in depressed Japanese patients. J Clin Psychopharmacol 1997 Dec; 17(6): 467–71

    Article  PubMed  CAS  Google Scholar 

  62. Fleishaker JC. Clinical pharmacokinetics of reboxetine, a selective norepinephrine reuptake inhibitor for the treatment of patients with depression. Clin Pharmacokinet 2000 Dec; 39(6): 413–27

    Article  PubMed  CAS  Google Scholar 

  63. Westra P, van Thiel MJ, Vermeer GA, et al. Pharmacokinetics of galanthamine (a long-acting anticholinesterase drug) in anaesthetized patients. Br J Anaesth 1986 Nov; 58(11): 1303–7

    Article  PubMed  CAS  Google Scholar 

  64. Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 2002; 41(10): 719–39

    Article  PubMed  CAS  Google Scholar 

  65. Robinson DM, Keating GM. Memantine: a review of its use in Alzheimer’s disease. Drugs 2006; 66(11): 1515–34

    Article  PubMed  CAS  Google Scholar 

  66. Abernethyl DR, Divoll M, Greenblatt DJ, et al. Absolute bioavailability of imipramine: influence of food. Psychopharmacology (Berl) 1984; 83(1): 104–6

    Article  CAS  Google Scholar 

  67. Blin O. The pharmacokinetics of pergolide in Parkinson’s disease. Curr Opin Neurol 2003 Dec; 16 Suppl. 1: S9–12

    Article  PubMed  CAS  Google Scholar 

  68. Reynolds Jr NC, Miska RM. Safety of anticonvulsants in hepatic porphyrias. Neurology 1981 Apr; 31(4): 480–4

    Article  PubMed  Google Scholar 

  69. Chounta A, Tsiodras S, Zouridakis S, et al. Sibutramine use associated with reversible hepatotoxicity. Ann Intern Med 2005 Nov 15; 143(10): 763–4

    PubMed  Google Scholar 

  70. Mehta H, Murray B, LoIudice TA. Hepatic dysfunction due to intravenous abuse of methylphenidate hydrochloride. J Clin Gastroenterol 1984 Apr; 6(2): 149–51

    Article  PubMed  CAS  Google Scholar 

  71. Farago F. Trigeminal neuralgia: its treatment with two new carbamazepine analogues. Eur Neurol 1987; 26(2): 73–83

    Article  PubMed  CAS  Google Scholar 

  72. Chitturi S, George J. Hepatotoxicity of commonly used drugs: nonsteroidal anti-inflammatory drugs, anti-hypertensives, antidiabetic agents, anticonvulsants, lipid-lowering agents, psychotropic drugs. Semin Liver Dis 2002; 22(2): 169–83

    Article  PubMed  CAS  Google Scholar 

  73. Kellermann K, Soditt V, Rambeck B, et al. Fatal hepatotoxicity in a child treated with vigabatrin. Acta Neurol Scand 1996 May; 93(5): 380–1

    Article  PubMed  CAS  Google Scholar 

  74. Sauve G, Bresson-Hadni S, Prost P, et al. Acute hepatitis after lamotrigine administration. Dig Dis Sci 2000 Sep; 45(9): 1874–7

    Article  PubMed  CAS  Google Scholar 

  75. Bjoro K, Gjerstad L, Bentdal O, et al. Topiramate and fulminant liver failure [letter]. Lancet 1998 Oct 3; 352(9134): 1119

    PubMed  CAS  Google Scholar 

  76. Lasso-de-La-Vega MC, Zapater P, Such J, et al. Gaba-pentin-associated hepatotoxicity. Am J Gastroenterol 2001 Dec; 96(12): 3460–2

    Article  PubMed  CAS  Google Scholar 

  77. Richardson CE, Williams DW, Kingham JG. Gabapentin induced cholestasis. BMJ 2002 Sep 21; 325(7365): 635

    Article  PubMed  Google Scholar 

  78. Brockmann K, Hanefeld F. Progressive elevation of liver enzymes in a child treated with sulthiame. Neuropediatrics 2001 Jun; 32(3): 165–6

    Article  PubMed  CAS  Google Scholar 

  79. Hubble JP, Koller WC, Cutler NR, et al. Pramipexole in patients with early Parkinson’s disease. Clin Neuropharmacol 1995 Aug; 18(4): 338–47

    Article  PubMed  CAS  Google Scholar 

  80. Maxwell JD, Carrella M, Parkes JD, et al. Plasma disappearance and cerebral effects of chlorpromazine in cirrhosis. Clin Sci 1972 Aug; 43(2): 143–51

    PubMed  CAS  Google Scholar 

  81. Dincsoy HP, Saelinger DA. Haloperidol-induced chronic cholestatic liver disease. Gastroenterology 1982 Sep; 83(3): 694–700

    PubMed  CAS  Google Scholar 

  82. Ozcanli T, Erdogan A, Ozdemir S, et al. Severe liver enzyme elevations after three years of olanzapine treatment: a case report and review of olanzapine associated hepatotoxicity. Prog Neuropsychopharmacol Biol Psychiatry 2006 Aug 30; 30(6): 1163–6

    Article  PubMed  CAS  Google Scholar 

  83. El Hajj I, Sharara AI, Rockey DC. Subfulminant liver failure associated with quetiapine. Eur J Gastroenterol Hepatol 2004 Nov; 16(12): 1415–8

    Article  PubMed  Google Scholar 

  84. Cohen LS, Cohen DE. Lithium-induced hyperbilir-ubinemia in an adolescent. J Clin Psychopharmacol 1991 Aug; 11(4): 274–5

    Article  PubMed  CAS  Google Scholar 

  85. Hazelwood RE. Ascites: a side effect of lithium [letter]? Am J Psychiatry 1981 Feb; 138(2): 257

    PubMed  CAS  Google Scholar 

  86. Krebs S, Dormann H, Muth-Selbach U, et al. Risperidone-induced cholestatic hepatitis. Eur J Gastroenterol Hepatol 2001 Jan; 13(1): 67–9

    Article  PubMed  CAS  Google Scholar 

  87. Morgan DD, Robinson JD, Mendenhall CL. Clinical pharmacokinetics of chlordiazepoxide in patients with alcoholic hepatitis. Eur J Clin Pharmacol 1981 Mar; 19(4): 279–85

    Article  PubMed  CAS  Google Scholar 

  88. Karsenti D, Blanc P, Bacq Y, et al. Hepatotoxicity associated with zolpidem treatment. BMJ 1999 May 1; 318(7192): 1179

    Article  PubMed  CAS  Google Scholar 

  89. van Vliet AC, Frenkel M, Wilson JH. Acute liver necrosis after treatment with opipramol. Ned Tijdschr Geneeskd 1977 Aug 20; 121(34): 1325–7

    PubMed  Google Scholar 

  90. Cai Q, Benson MA, Talbot TJ, et al. Acute hepatitis due to fluoxetine therapy. Mayo Clin Proc 1999 Jul; 74(7): 692–4

    Article  PubMed  CAS  Google Scholar 

  91. Lopez-Torres E, Lucena MI, Seoane J, et al. Hepatotoxicity related to citalopram. Am J Psychiatry 2004 May; 161(5): 923–4

    Article  PubMed  Google Scholar 

  92. Green BH. Fluvoxamine and hepatic function. Br J Psychiatry 1988 Jul; 153: 130–1

    Article  PubMed  CAS  Google Scholar 

  93. Timmings P, Lamont D. Intrahepatic cholestasis associated with moclobemide leading to death. Lancet 1996 Mar 16; 347(9003): 762–3

    Article  PubMed  CAS  Google Scholar 

  94. Otani K, Kaneko S, Tasaki H, et al. Hepatic injury caused by mianserin. BMJ 1989 Aug 19; 299(6697): 519

    Article  PubMed  CAS  Google Scholar 

  95. Hui CK, Yuen MF, Wong WM, et al. Mirtazapine-induced hepatotoxicity. J Clin Gastroenterol 2002 Sep; 35(3): 270–1

    Article  PubMed  CAS  Google Scholar 

  96. Horsmans Y, De Clercq M, Sempoux C. Venlafaxine-associated hepatitis [letter]. Ann Intern Med 1999 Jun 1; 130(11): 944

    PubMed  CAS  Google Scholar 

  97. Cardona X, Avila A, Castellanos P. Venlafaxine-associated hepatitis [letter]. Ann Intern Med 2000 Mar 7; 132(5): 417

    PubMed  CAS  Google Scholar 

  98. Hu KQ, Tiyyagura L, Kanel G, et al. Acute hepatitis induced by bupropion. Dig Dis Sci 2000 Sep; 45(9): 1872–3

    Article  PubMed  CAS  Google Scholar 

  99. Alvaro D, Onetti-Muda A, Moscatelli R, et al. Acute cholestatic hepatitis induced by bupropion prescribed as pharmacological support to stop smoking: a case report. Dig Liver Dis 2001 Nov; 33(8): 703–6

    Article  PubMed  CAS  Google Scholar 

  100. Jones DE, Newton JL. An open study of modafinil for the treatment of daytime somnolence and fatigue in primary biliary cirrhosis. Aliment Pharmacol Ther 2007 Feb 15; 25(4): 471–6

    Article  PubMed  CAS  Google Scholar 

  101. Alvin J, McHorse T, Hoyumpa A, et al. The effect of liver disease in man on the disposition of phenobarbital. J Pharmacol Exp Ther 1975 Jan; 192(1): 224–35

    PubMed  CAS  Google Scholar 

  102. Pisani F, Perucca E, Primerano G, et al. Single-dose kinetics of primidone in acute viral hepatitis. Eur J Clin Pharmacol 1984; 27(4): 465–9

    Article  PubMed  CAS  Google Scholar 

  103. Blaschke TF, Meffin PJ, Melmon KL, et al. Influence of acute viral hepatitis on phenytoin kinetics and protein binding. Clin Pharmacol Ther 1975 Jun; 17(6): 685–91

    PubMed  CAS  Google Scholar 

  104. Pacifici GM, Viani A, Rizzo G, et al. Plasma protein binding of clonazepam in hepatic and renal insufficiency and after hemodialysis. Ther Drug Monit 1987 Dec; 9(4): 369–73

    Article  PubMed  CAS  Google Scholar 

  105. Vasudevan AE, Goh KL, Bulgiba AM. Impairment of psychomotor responses after conscious sedation in cirrhotic patients undergoing therapeutic upper GI endoscopy. Am J Gastroenterol 2002 Jul; 97(7): 1717–21

    Article  PubMed  CAS  Google Scholar 

  106. Klotz U, Rapp T, Muller WA. Disposition of valproic acid in patients with liver disease. Eur J Clin Pharmacol 1978 Mar 17; 13(1): 55–60

    Article  PubMed  CAS  Google Scholar 

  107. Krahenbuhl S, Brandner S, Kleinle S, et al. Mitochondrial diseases represent a risk factor for valproate-induced fulminant liver failure. Liver 2000 Jul; 20(4): 346–8

    Article  PubMed  CAS  Google Scholar 

  108. Marcellin P, de Bony F, Garret C, et al. Influence of cirrhosis on lamotrigine pharmacokinetics. Br J Clin Pharmacol 2001 May; 51(5): 410–4

    Article  PubMed  CAS  Google Scholar 

  109. Brockmoller J, Thomsen T, Wittstock M, et al. Pharmacokinetics of levetiracetam in patients with moderate to severe liver cirrhosis (Child-Pugh classes A, B, and C): characterization by dynamic liver function tests. Clin Pharmacol Ther 2005 Jun; 77(6): 529–41

    Article  PubMed  CAS  Google Scholar 

  110. Whiteman PD, Fowle AS, Hamilton MJ, et al. Pharmacokinetics and pharmacodynamics of procyclidine in man. Eur J Clin Pharmacol 1985; 28(1): 73–8

    Article  PubMed  CAS  Google Scholar 

  111. Jorga KM, Kroodsma JM, Fotteler B, et al. Effect of liver impairment on the pharmacokinetics of tolcapone and its metabolites. Clin Pharmacol Ther 1998 Jun; 63(6): 646–54

    Article  PubMed  CAS  Google Scholar 

  112. Read AE, Laidlaw J, McCarthy CF. Effects of chlorpromazine in patients with hepatic disease. Br Med J 1969 Aug 30; 3(5669): 497–9

    Article  PubMed  CAS  Google Scholar 

  113. Hu OY, Tang HS, Sheeng TY, et al. Pharmacokinetics of promazine: I. Disposition in patients with acute viral hepatitis B. Biopharm Drug Dispos 1990 Oct; 11(7): 557–68

    Article  PubMed  CAS  Google Scholar 

  114. Hu OY, Tang HS, Sheeng TY, et al. Pharmacokinetics of promazine in patients with hepatic cirrhosis: correlation with a novel galactose single point method. J Pharm Sci 1995 Jan; 84(1): 111–4

    Article  PubMed  CAS  Google Scholar 

  115. Zhang WV, Ramzan I, Murray M. Impaired microsomal oxidation of the atypical antipsychotic agent clozapine in hepatic steatosis. J Pharmacol Exp Ther 2007 Aug; 322(2): 770–7

    Article  PubMed  CAS  Google Scholar 

  116. Thyrum PT, Wong YW, Yeh C. Single-dose pharmacokinetics of quetiapine in subjects with renal or hepatic impairment. Prog Neuropsychopharmacol Biol Psychiatry 2000 May; 24(4): 521–33

    Article  PubMed  CAS  Google Scholar 

  117. Snoeck E, Van Peer A, Sack M, et al. Influence of age, renal and liver impairment on the pharmacokinetics of risper-idone in man. Psychopharmacology (Berl) 1995 Dec; 122(3): 223–9

    Article  CAS  Google Scholar 

  118. Klotz U, Antonin KH, Brugel H, et al. Disposition of diazepam and its major metabolite desmethyldiazepam in patients with liver disease. Clin Pharmacol Ther 1977 Apr; 21(4): 430–6

    PubMed  CAS  Google Scholar 

  119. Klotz U, Avant GR, Hoyumpa A, et al. The effects of age and liver disease on the disposition and elimination of diazepam in adult man. J Clin Invest 1975 Feb; 55(2): 347–59

    Article  PubMed  CAS  Google Scholar 

  120. Andreasen PB, Hendel J, Greisen G, et al. Pharmacokinetics of diazepam in disordered liver function. Eur J Clin Pharmacol 1976 Jun 15; 10(2): 115–20

    Article  PubMed  CAS  Google Scholar 

  121. Branch RA, Morgan MH, James J, et al. Intravenous administration of diazepam in patients with chronic liver disease. Gut 1976 Dec; 17(12): 975–83

    Article  PubMed  CAS  Google Scholar 

  122. Bozkurt P, Kaya G, Suzer O, et al. Diazepam serum concentration-sedative effect relationship in patients with liver disease. Middle East J Anesthesiol 1996 Feb; 13(4): 405–13

    PubMed  CAS  Google Scholar 

  123. Sellers EM, Greenblatt DJ, Giles HG, et al. Chlordiazepoxide and oxazepam disposition in cirrhosis. Clin Pharmacol Ther 1979 Aug; 26(2): 240–6

    PubMed  CAS  Google Scholar 

  124. Roberts RK, Wilkinson GR, Branch RA, et al. Effect of age and parenchymal liver disease on the disposition and elimination of chlordiazepoxide (librium). Gastroenterology 1978 Sep; 75(3): 479–85

    PubMed  CAS  Google Scholar 

  125. Shull HJ, Wilkinson GR, Johnson R, et al. Normal disposition of oxazepam in acute viral hepatitis and cirrhosis. Ann Intern Med 1976 Apr; 84(4): 420–5

    PubMed  CAS  Google Scholar 

  126. Kraus JW, Desmond PV, Marshall JP, et al. Effects of aging and liver disease on disposition of lorazepam. Clin Pharmacol Ther 1978 Oct; 24(4): 411–9

    PubMed  CAS  Google Scholar 

  127. Monjanel-Mouterde S, Antoni M, Bun H, et al. Pharmacokinetics of a single oral dose of clobazam in patients with liver disease. Pharmacol Toxicol 1994 Jun; 74(6): 345–50

    Article  PubMed  CAS  Google Scholar 

  128. Juhl RP, Van Thiel DH, Dittert LW, et al. Alprazolam pharmacokinetics in alcoholic liver disease. J Clin Pharmacol 1984 Feb–Mar; 24(2-3): 113–9

    PubMed  CAS  Google Scholar 

  129. Dalhoff K, Poulsen HE, Garred P, et al. Buspirone pharmacokinetics in patients with cirrhosis. Br J Clin Pharmacol 1987 Oct; 24(4): 547–50

    Article  PubMed  CAS  Google Scholar 

  130. Barbhaiya RH, Shukla UA, Pfeffer M, et al. Disposition kinetics of buspirone in patients with renal or hepatic impairment after administration of single and multiple doses. Eur J Clin Pharmacol 1994; 46(1): 41–7

    Article  PubMed  CAS  Google Scholar 

  131. Jochemsen R, Van Beusekom BR, Spoelstra P, et al. Effect of age and liver cirrhosis on the pharmacokinetics of nitrazepam. Br J Clin Pharmacol 1983 Mar; 15(3): 295–302

    Article  PubMed  CAS  Google Scholar 

  132. Drouet-Coassolo C, Iliadis A, Coassolo P, et al. Pharmacokinetics of flunitrazepam following single dose oral administration in liver disease patients compared with healthy volunteers. Fundam Clin Pharmacol 1990; 4(6): 643–51

    Article  PubMed  CAS  Google Scholar 

  133. Bakti G, Fisch HU, Karlaganis G, et al. Mechanism of the excessive sedative response of cirrhotics to benzodiazepines: model experiments with triazolam. Hepatology 1987 Jul–Aug; 7(4): 629–38

    Article  PubMed  CAS  Google Scholar 

  134. Kroboth PD, Smith RB, Van Thiel DH, et al. Nighttime dosing of triazolam in patients with liver disease and normal subjects: kinetics and daytime effects. J Clin Pharmacol 1987 Aug; 27(8): 555–60

    PubMed  CAS  Google Scholar 

  135. Robin DW, Lee M, Hasan SS, et al. Triazolam in cirrhosis: pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 1993 Dec; 54(6): 630–7

    Article  PubMed  CAS  Google Scholar 

  136. Hildebrand M, Hellstern A, Humpel M, et al. Plasma levels and urinary excretion of lormetazepam in patients with liver cirrhosis and in healthy volunteers. Eur J Drug Metab Pharmacokinet 1990 Jan–Mar; 15(1): 19–26

    Article  PubMed  CAS  Google Scholar 

  137. Ghabrial H, Desmond PV, Watson KJ, et al. The effects of age and chronic liver disease on the elimination of temazepam. Eur J Clin Pharmacol 1986; 30(1): 93–7

    Article  PubMed  CAS  Google Scholar 

  138. Ochs HR, Greenblatt DJ, Verburg-Ochs B, et al. Temazepam clearance unaltered in cirrhosis. Am J Gastroenterol 1986 Jan; 81(1): 80–4

    PubMed  CAS  Google Scholar 

  139. Trouvin JH, Farinotti R, Haberer JP, et al. Pharmacokinetics of midazolam in anaesthetized cirrhotic patients. Br J Anaesth 1988 Jun; 60(7): 762–7

    Article  PubMed  CAS  Google Scholar 

  140. MacGilchrist AJ, Birnie GG, Cook A, et al. Pharmacokinetics and pharmacodynamics of intravenous midazolam in patients with severe alcoholic cirrhosis. Gut 1986 Feb; 27(2): 190–5

    Article  PubMed  CAS  Google Scholar 

  141. Pentikainen PJ, Valisalmi L, Himberg JJ, et al. Pharmacokinetics of midazolam following intravenous and oral administration in patients with chronic liver disease and in healthy subjects. J Clin Pharmacol 1989 Mar; 29(3): 272–7

    PubMed  CAS  Google Scholar 

  142. Chalasani N, Gorski JC, Patel NH, et al. Hepatic and intestinal cytochrome P450 3A activity in cirrhosis: effects of transjugular intrahepatic portosystemic shunts. Hepatology 2001 Dec; 34(6): 1103–8

    Article  PubMed  CAS  Google Scholar 

  143. Parker G, Roberts CJ. Plasma concentrations and central nervous system effects of the new hypnotic agent zopiclone in patients with chronic liver disease. Br J Clin Pharmacol 1983 Sep; 16(3): 259–65

    Article  PubMed  CAS  Google Scholar 

  144. Meredith CG, Christian Jr CD, et al. Diphenhydramine disposition in chronic liver disease. Clin Pharmacol Ther 1984 Apr; 35(4): 474–9

    Article  PubMed  CAS  Google Scholar 

  145. Pentikainen PJ, Neuvonen PJ, Jostell KG. Pharmacokinetics of chlormethiazole in healthy volunteers and patients with cirrhosis of the liver. Eur J Clin Pharmacol 1980 Apr; 17(4): 275–84

    Article  PubMed  CAS  Google Scholar 

  146. Centerholt C, Ekblom M, Odergren T, et al. Pharmacokinetics and sedative effects in healthy subjects and subjects with impaired liver function after continuous infusion of clomethiazole. Eur J Clin Pharmacol 2003 Jun; 59(2): 117–22

    PubMed  CAS  Google Scholar 

  147. Hrdina PD, Lapierre YD, Koranyi EK. Altered amitriptyline kinetics in a depressed patient with porto-caval anastomosis. Can J Psychiatry 1985 Mar; 30(2): 111–3

    PubMed  CAS  Google Scholar 

  148. Benfield P, Heel RC, Lewis SP. Fluoxetine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 1986 Dec; 32(6): 481–508

    Article  PubMed  CAS  Google Scholar 

  149. Schenker S, Bergstrom RF, Wolen RL, et al. Fluoxetine disposition and elimination in cirrhosis. Clin Pharmacol Ther 1988 Sep; 44(3): 353–9

    Article  PubMed  CAS  Google Scholar 

  150. Joffe P, Larsen FS, Pedersen V, et al. Single-dose pharmacokinetics of citalopram in patients with moderate renal insufficiency or hepatic cirrhosis compared with healthy subjects. Eur J Clin Pharmacol 1998 May; 54(3): 237–42

    Article  PubMed  CAS  Google Scholar 

  151. Dalhoff K, Almdal TP, Bjerrum K, et al. Pharmacokinetics of paroxetine in patients with cirrhosis. Eur J Clin Pharmacol 1991; 41(4): 351–4

    Article  PubMed  CAS  Google Scholar 

  152. Demolis JL, Angebaud P, Grange JD, et al. Influence of liver cirrhosis on sertraline pharmacokinetics. Br J Clin Pharmacol 1996 Sep; 42(3): 394–7

    Article  PubMed  CAS  Google Scholar 

  153. van Harten J, Duchier J, Devissaguet JP, et al. Pharmacokinetics of fluvoxamine maleate in patients with liver cirrhosis after single-dose oral administration. Clin Pharmacokinet 1993 Feb; 24(2): 177–82

    Article  PubMed  Google Scholar 

  154. Areberg J, Christophersen JS, Poulsen MN, et al. The pharmacokinetics of escitalopram in patients with hepatic impairment. AAPS J 2006; 8(1): E14–9

    Article  PubMed  CAS  Google Scholar 

  155. Stoeckel K, Pfefen JP, Mayersohn M, et al. Absorption and disposition of moclobemide in patients with advanced age or reduced liver or kidney function. Acta Psychiatr Scand Suppl 1990; 360: 94–7

    Article  PubMed  CAS  Google Scholar 

  156. Timmer CJ, Sitsen JM, Delbressine LP. Clinical pharmacokinetics of mirtazapine. Clin Pharmacokinet 2000 Jun; 38(6): 461–74

    Article  PubMed  CAS  Google Scholar 

  157. Tran A, Laneury J, Duchêne P, et al. Pharmacokinetics of reboxetine in volunteers with hepatic impairment. Clin Drug Invest 2000; 19(6): 473–7

    Article  CAS  Google Scholar 

  158. DeVane CL, Laizure SC, Stewart JT, et al. Disposition of bupropion in healthy volunteers and subjects with alcoholic liver disease. J Clin Psychopharmacol 1990 Oct; 10(5): 328–32

    Google Scholar 

  159. Zhao Q, Iyer GR, Verhaeghe T, et al. Pharmacokinetics and safety of galantamine in subjects with hepatic impairment and healthy volunteers. J Clin Pharmacol 2002 Apr; 42(4): 428–36

    Article  PubMed  CAS  Google Scholar 

  160. Reyes JF, Vargas R, Kumar D, et al. Steady-state pharmacokinetics, pharmacodynamics and tolerability of donepezil hydrochloride in hepatically impaired patients. Br J Clin Pharmacol 2004 Nov; 58 Suppl. 1: 9–17

    Article  PubMed  CAS  Google Scholar 

  161. Tiseo PJ, Vargas R, Perdomo CA, et al. An evaluation of the pharmacokinetics of donepezil HCl in patients with impaired hepatic function. Br J Clin Pharmacol 1998 Nov; 46 Suppl. 1: 51–5

    Article  PubMed  CAS  Google Scholar 

  162. Pugh RN, Murray-Lyon IM, Dawson JL, et al. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 1973 Aug; 60(8): 646–9

    Article  PubMed  CAS  Google Scholar 

  163. Wilkinson GR. Clearance approaches in pharmacology. Pharmacol Rev 1987 Mar; 39(1): 1–47

    PubMed  CAS  Google Scholar 

  164. Ito K, Houston JB. Comparison of the use of liver models for predicting drug clearance using in vitro kinetic data from hepatic microsomes and isolated hepatocytes. Pharm Res 2004 May; 21(5): 785–92

    Article  PubMed  CAS  Google Scholar 

  165. Frye RF, Zgheib NK, Matzke GR, et al. Liver disease selectively modulates cytochrome P450-mediated metabolism. Clin Pharmacol Ther 2006 Sep; 80(3): 235–45

    Article  PubMed  CAS  Google Scholar 

  166. George J, Murray M, Byth K, et al. Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease. Hepatology 1995 Jan; 21(1): 120–8

    PubMed  CAS  Google Scholar 

  167. Branch RA. Drugs in liver disease. Clin Pharmacol Ther 1998 Oct; 64(4): 462–5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Swiss National Science Foundation to Professor Stephan Krähenbühl (310000-112483). ## None of the authors have any conflicts of interest that are directly relevant to the content of this review. The funding organisation had no influence on the study design, analysis and interpretation of data or writing of the review. The authors all contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Krähenbühl.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlatter, C., Egger, S.S., Tchambaz, L. et al. Pharmacokinetic Changes of Psychotropic Drugs in Patients with Liver Disease. Drug-Safety 32, 561–578 (2009). https://doi.org/10.2165/00002018-200932070-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200932070-00003

Keywords

Navigation