Skip to main content
Log in

Drug-Induced Ocular Disorders

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

While beneficial therapeutically, almost all medications have untoward effects on various body tissues and functions, including the eye in which organ toxic reactions are readily detectable. Every part of the eye and all ocular functions could be affected adversely. In this review, we describe the most commonly recognized drug-induced ocular disorders, their specific clinical features, the medications that can cause the problem, the differential diagnosis and possible mechanisms of action, as well as guidelines for the management of the adverse reactions.

The eyelids are most frequently involved in drug toxicity that commonly manifests as inflammation, hypersensitivity reaction or dermatitis. Drug-induced keratoconjunctival disorders present mainly as conjunctival hyperaemia (red eye), with or without superficial corneal involvement. Frequently, drug preservatives in topical ocular medications induce these adverse effects. Treatment of blepharospasm with Botox® may lead to drooping of the eyelids and corneal exposure. Intraoperative floppy iris syndrome is a drug-induced reaction in patients treated with tamsulosin and who undergo cataract surgery. Certain sulfa-based drugs can cause swelling of the ciliary body and lead to the development of angle-closure glaucoma. In addition, adrenergic agents, certain β2-adrenergic agonists and anticholinergic agents may induce pupillary dilation and precipitate angle-closure glaucoma in susceptible patients. Glucocorticoids administered systemically, topically or intravitreally are known to increase intraocular pressure, which can lead to the development of open-angle glaucoma in susceptible patients. This painless form of glaucoma has also been associated with the use of the anticancer agents docetaxel and paclitaxel. The toxic effects of systemic and topically applied drugs may manifest as cloudiness of the lens. Long-term use of glucocorticoids produces a characteristic posterior subcapsular cataract and, although the opacities may remain stationary or progress, they rarely regress upon drug withdrawal. Systemic administration of phenothiazines or busulfan induce cataractous changes in the anterior or posterior cortex, respectively. Many systemic drugs reach the retina through the vascular supply. Aminoquinolines induce a characteristic bull’s eye maculopathy. Phenothiazines bind to melanin granules and can cause a severe phototoxic retinopathy. Typical tamoxifen retinopathy manifests as crytalline deposits in the inner retina. Some patients treated with retinoids have decreased night vision and abnormal dark-adaptation. Patients on long-term treatment with linezolid may develop an optic neuropathy (swollen or pale optic disc), symmetric painless decrease of visual acuity and colour vision, and bilateral visual field defects. A probable link exists between amiodarone and a bilateral optic neuropathy that is very similar to nonarteritic ischaemic optic neuropathy (NAION). The most common adverse effects of cGMP-specific phosphodiesterase type 5 inhibitors (erectile dysfunction drugs) are changes in colour perception, blurry vision and increased light sensitivity; recently these drugs have been also implicated in the development of NAION. A bilateral, retrobulbar optic neuropathy that manifests as loss of visual acuity or colour vision and visual field defect is associated with the use of ethambutol. Many different kinds of medications can cause similar ocular adverse reactions. Conversely, a single medication may affect more than one ocular structure and cause multiple, clinically recognizable disorders. Clinicians should be mindful of drug-induced ocular disorders, whether or not listed in product package inserts and, if in doubt, consult with an ophthalmologist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. 1The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Tripathi RC, Tripathi BJ. The eye. In: Riddell R, editor. Pathology of drug-induced and toxic diseases. New York (NY): Churchill Livingstone, 1982: 377–456

    Google Scholar 

  2. Physicians’ desk reference. 60th ed. Montvale (NJ): Thomson Healthcare, 2006

  3. PDR® for nonprescription drugs, dietary supplements and herbs. 2nd ed. Montvale (NJ): Thomson Healthcare, 2006

  4. Fraunfelder FT, Fraunfelder FW. Drug-induced ocular side effects. Boston (MA): Butterworth-Heinemann, 2001

    Google Scholar 

  5. Bron AJ, Tripathi RC, Tripathi BJ. Wolff’s anatomy of the eye and orbit. London (UK): Chapman and Hall, 1997

    Google Scholar 

  6. Tripathi BJ, Tripathi RC, Kolli SP. Cytotoxicity of ophthalmic preservatives on human corneal epithelium. Lens Eye Toxic Res 1992; 9(3–4): 361–75

    PubMed  CAS  Google Scholar 

  7. Gould HL. Solving the preservative paradox. Ophthalmology management [online]. Available from URL: http://www.ophthalmologymanagement.com [Accessed 2007 Jan12]

  8. Dutot M, Pouzaud F, Larosche I, et al. Fluoroquinolone eye drop-induced cytotoxocity: role of preservative in P2X7 cell death receptor activation and apoptosis. Invest Ophthalmol Vis Sci 2006; 47: 2812–9

    Article  PubMed  Google Scholar 

  9. Lewis RA, Katz GJ, Weiss MJ, et al. Travoprost 0.004% with and without benzalkonium chloride: a comparison of safety and efficacy. J Glaucoma 2007; 16(1): 98–103

    Article  PubMed  Google Scholar 

  10. Lowe F. Alpha-1-adrenoceptor blockade in the treatment of benign prostatic hyperplasis. Prostate Cancer Prostatic Dis 1999; 2: 110–9

    Article  PubMed  CAS  Google Scholar 

  11. Thiyagarajan M. Alpha-adrenoceptor antagonists in the treatment of benign prostate hyperplasia. Pharmacology 2002; 65: 119–28

    Article  PubMed  CAS  Google Scholar 

  12. Nakamura S, Taniguchi T, Suzuki F, et al. Evaluation of alpha-ladrenoceptors in the rabbit iris: pharmacological characterization and expression of mRNA. Br J Pharmacol 1999; 127: 1367–74

    Article  PubMed  CAS  Google Scholar 

  13. Narayan P. Evans CP, Moon T. Low-term safety and efficacy of tamsulosin for the treatment of lower urinary tract symptoms associated with benign prostatic hyperplasia. J Urol 2003; 170: 498–502

    Article  PubMed  Google Scholar 

  14. Roehrborn CG, Schwinn DA. Alpha-adrenergic receptors and their inhibitors in lower urinary tract symptoms and benign prostate hyperplasia. J Urol 2004; 171: 1029–35

    Article  PubMed  CAS  Google Scholar 

  15. Chang DF, Campbell JR. Intraoperative floppy iris syndrome associated with tamsulosin. J Cataract Refract Surg 2005; 31: 664–73

    Article  PubMed  Google Scholar 

  16. Ciccone J. ASCRS and urologists team up on Flomax [online]. Available from URL: http://www.eyeworld.org/article.php-?.sid=3285&strict=&morphologic=&query=Ciccone%20J [Accessed 2006 Nov 14]

  17. Tripathi RC, Tripathi BJ, Haggerty C. Drug-induced glaucomas. Drug Safety 2003; 26(11): 749–67

    Article  PubMed  CAS  Google Scholar 

  18. Tripathi RC, Parapuram SK, Tripathi BJ, et al. Corticosteroids and glaucoma risk. Drugs Aging 1999 Dec; 15(6): 439–50

    Article  PubMed  CAS  Google Scholar 

  19. Jonas JB, Kressig I, Degen R. Secondary chronic open-angle glaucoma after intravitrreal triamcinolone acetonide. Arch Ophthalmol 2003; 121: 729–30

    Article  PubMed  Google Scholar 

  20. Smithen LM, Ober MD, Maranan L, et al. Intravitreal triamcinolone acetonide and intraocular pressure. Am J Ophthalmol 2004; 138: 740–3

    Article  PubMed  CAS  Google Scholar 

  21. Fabre-Guillevin E, Tchen N, Anibali-Charpiat M-F, et al. Taxane-induced glaucoma. Lancet 1999; 354(9185): 1181–2

    Article  PubMed  CAS  Google Scholar 

  22. Darkeh AK, Silverberg MA. Glaucoma, acute angle-closure [online]. Available from URL: http://www.emedicine.com/emerg/topic752.htm [Accessed 2007 Jun 8]

  23. Bradford CA. Basic ophthalmology for medical students and primary care residents. 8th ed. San Francisco (CA): American Academy of Ophthalmology, 2004

    Google Scholar 

  24. Marsh BC, Cantor LB. The Spaeth gonioscopic grading system: assessing the configuration of the anterior chamber angle. Glaucoma Today 2005; May/Jun: 22–5

  25. Rho DS. Acute angle-closure glaucoma after albuterol nebulizer treatment. Am J Ophthalmol 2000; 130(1): 123

    Article  PubMed  CAS  Google Scholar 

  26. Shah P, Dhurjon L, Metcalfe T, et al. Acute angle-closure glaucoma associated with nebulised ipratropium bromide and salbutamol. BMJ 1992; 304(6818): 40–1

    Article  PubMed  CAS  Google Scholar 

  27. Hall SK. Acute angle-closure glaucoma as a complication of combined beta-agonist and ipratropium bromide therapy in the emergency department. Ann Emerg Med 1994; 23(4): 884–7

    Article  PubMed  CAS  Google Scholar 

  28. Dobrilla G, Felder M, Chilovi F, et al. Exacerbation of glaucoma associated with both cimetidine and ranitidine [letter]. Lancet 1982; I(8280): 1078

    Article  Google Scholar 

  29. Banta JT, Hoffman K, Budenz DL, et al. Presumed topriamate-induced bilateral acute angle-closure glaucoma. Am J Ophthalmol 2001; 132(1): 112–4

    Article  PubMed  CAS  Google Scholar 

  30. Rhee DJ, Goldberg MJ, Parrish RK. Bilateral angle-closure glaucoma and ciliary body swelling from topiramate. Arch Ophthalmol 2001; 119(11): 1721–3

    PubMed  CAS  Google Scholar 

  31. Sankar PS, Pasquale LR, Grosskreutz CL. Uveal effusion and secondary angle-closure glaucoma associated with topiramate use. Arch Ophthalmol 2001; 119: 1210–1

    PubMed  CAS  Google Scholar 

  32. Fraunfelder FW, Fraunfelder FT, Keates EU. Topiramate-associated acute, bilateral, secondary angle-closure glaucoma. Ophthamology 2004; 111: 109–11

    Article  CAS  Google Scholar 

  33. Tripathi RC, Kipp MA, Tripathi BJ, et al. Ocular toxicity of prednisone in pediatric patients with inflammatory bowel disease. Lens Eye Toxic Res 1992; 9(3–4): 469–82

    PubMed  CAS  Google Scholar 

  34. Jonas JB, Kreissig I, Degenring R. Intravitreal triamcinolone acetonide for the treatment of intraocular proliferative, exudative, and neovascular diseases. Prog Retin Eye Res 2005; 24(5): 587–611

    Article  PubMed  CAS  Google Scholar 

  35. Jonas JB. Intravitreal triamcinolone acetonide: a change in paradigm. Ophthalmic Res 2006; 38(4): 218–45

    Article  PubMed  CAS  Google Scholar 

  36. Cekic O, Chang S, Tseng JJ, et al. Cataract progression after intravitreal triamcinolone injection. Am J Ophthalmol 2005; 139: 993–8

    Article  PubMed  Google Scholar 

  37. Grimes P, von Sallmann L, Frichette A. Influence of Myleran on cell proliferation in the lens epithelium. Invest Ophthalmol 1964; 3: 566–76

    PubMed  CAS  Google Scholar 

  38. Weiner A, Sandberg MA, Gaudio AR, et al. Hydroxychloroquine retinopathy. Am J Ophthalmol 1991; 112: 528–34

    PubMed  CAS  Google Scholar 

  39. Roque MR, Roque BL, Foster S. Chloroquine/hydroxycholoroquine toxicity [online]. Available from URL: http://www.emedicine.com/oph/topic245.htm [Accessed 2006 Nov21]

  40. Easterbrook M. Detection and prevention of maculopathy associated with antimalarials. Int Ophthalmol Clinic 1999; 39(2): 49–57

    Article  CAS  Google Scholar 

  41. Bernstein HN. Chloroquine ocular toxicity. Surv Ophthalmol 1967; 12(5): 415–47

    PubMed  CAS  Google Scholar 

  42. Bernstein HN. Ocular safety of hydroxychloroquine. Ann Ophthalmol 1991; 23(8): 292–6

    PubMed  CAS  Google Scholar 

  43. Levy GD, Munz SJ, Paschal J. Incidence of hydroxychloroquine retinopathy in 1,207 patients in a large multicenter outpatient practice. Arthritis Rheum 1997; 40(8): 1482–6

    Article  PubMed  CAS  Google Scholar 

  44. Simmons ST. 2007–2008 BCSC Section10: glaucoma. San Francisco (CA): American Academy of Ophthalmology, 2007

    Google Scholar 

  45. Marmor MF, Carr RE, Esterbrook M, et al. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy [online]. Available from URL: http://www.aao.org/education/statements/upload/Recommendations-on-Screening-for-Chloroquine-and-Hydroxychlorquine-Retinopathy.pdf [Accessed 2007 Jun 8]

  46. The University of Michigan Kellogg Eye Center [online]. Available from URL: http://www.kellogg.umich.edu/vtm/retina_cases/48/history.html [Accessed 2007 Feb 2]

  47. Tekell JL, Silva JA, Maas JA, et al. Thioridazine-induced retinopathy. Am J Psychiatry 1996; 153(9): 1234–5

    PubMed  CAS  Google Scholar 

  48. Shah GK, Auerbach DB, Augsburger JJ, et al. Acute thioridazine retinopathy. Arch Ophthalmol 1998; 116(6): 826–7

    PubMed  CAS  Google Scholar 

  49. Gorin MB, Day R, Costantino JP, et al. Long-term tamoxifen citrate use and potential ocular toxicity. Am J Ophthalmol 1998; 125: 493–50

    Article  PubMed  CAS  Google Scholar 

  50. Gianni L, Panzini I, Li S, et al. Ocular toxicity during adjunct chemoendocrine therapy for early breast cancer: results from international breast cancer study group trials. Cancer 2006; 106: 505–13

    Article  PubMed  CAS  Google Scholar 

  51. Weleber RG, Denman ST, Hanifin JM, et al. Abnormal retinal function associated with isotretinoin therapy fro acne. Arch Ophthalmol 1986; 104: 831–7

    Article  PubMed  CAS  Google Scholar 

  52. Rucker JC, Hamilton SR, Bardenstein D, et al. Linezolid-associated toxic optic neuropathy. Neurology 2006; 66: 595–8

    Article  PubMed  CAS  Google Scholar 

  53. Macaluso DC, Shults WT, Fraunfelder FT. Features of amiodarone-induced optic neuropathy. Am J Ophthalmol 1999; 127: 610–2

    Article  PubMed  CAS  Google Scholar 

  54. Marmor MF. Sildenafil (Viagra) and ophthalmology. Arch Ophthalmol 1999; 117: 518–9

    Article  PubMed  CAS  Google Scholar 

  55. Fraunfelder FW. Visual effects associated with erectile dysfunction agents. Am J Ophthalmol 2005; 140(4): 723–4

    Article  PubMed  CAS  Google Scholar 

  56. Pomeranz HD, Smith KH, Hart WM, et al. Sildenafil-associated nonarteritic anterior ischemic optic neuropathy. Ophthalmology 2003; 110(9): 1860–1

    Article  Google Scholar 

  57. Fraunfelder FW, Fraunfelder FT. Drug-related adverse effects of clinical importance to the ophthalmologists [online]. Available from URL: http://piodr.sterling.net/index.cfm?.fuseaction=home.whatsnew [Accessed 2007 Jun 8]

  58. Leibold JE. The ocular toxicity of ethambutol and its relation to dose. Ann NY Acad Sci 1966; 135: 904–9

    Article  PubMed  CAS  Google Scholar 

  59. Chatterjee VKK, Buchanan DR, Friedmann AI, et al. Ocular toxicity following ethambutol in standard dosage. Br J Dis Chest 1986; 80: 288–90

    Article  PubMed  CAS  Google Scholar 

  60. Smith JL. Should ethambutol be barred? J Clin Neuroopthalmol 1987; 7: 84–6

    Google Scholar 

  61. Barron GJ, Tepper L, Lovine G. Ocular toxicity from ethambutol. Am J Ophthalmol 1974; 77: 256–60

    PubMed  CAS  Google Scholar 

  62. Citron KM, Thomas GO. Ocular toxicity from ethambutol. Thorax 1986; 41: 737–9

    Article  PubMed  CAS  Google Scholar 

  63. Kozak SF, Inderlied CB, Hsu HY, et al. The role of copper on ethambutol’s antimicrobial action and implication for ethambutol-induced optic neuropathy. Diagn Microbiol Infect Dis 1998; 30(2): 83–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This review was supported in part by the Vision Research Foundation. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Tripathi, R.C. & Tripathi, B.J. Drug-Induced Ocular Disorders. Drug-Safety 31, 127–141 (2008). https://doi.org/10.2165/00002018-200831020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200831020-00003

Keywords

Navigation