Skip to main content
Log in

Interactions between Antiepileptic and Antipsychotic Drugs

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Antiepileptic and antipsychotic drugs are often prescribed together. Interactions between the drugs may affect both efficacy and toxicity. This is a review of human clinical data on the interactions between the antiepileptic drugs carbamazepine, valproic acid (sodium valproate), vigabatrin, lamotrigine, gabapentin, topiramate, tiagabine, oxcarbazepine, levetiracetam, pregabalin, felbamate, zonisamide, phenobarbital and phenytoin with the antipsychotic drugs risperidone, olanzapine, quetiapine, clozapine, amisulpride, sulpiride, ziprasidone, aripiprazole, haloperidol and chlorpromazine; the limited information on interactions between antiepileptic drugs and zuclopenthixol, periciazine, fluphenazine, flupenthixol and pimozide is also presented. Many of the interactions depend on the induction or inhibition of the cytochrome P450 isoenzymes, but other important mechanisms involve the uridine diphosphate glucuronosyltransferase isoenzymes and protein binding.

There is some evidence for the following effects. Carbamazepine decreases the plasma concentrations of both risperidone and its active metabolite. It also decreases concentrations of olanzapine, clozapine, ziprasidone, haloperidol, zuclopenthixol, flupenthixol and probably chlorpromazine and fluphenazine. Quetiapine increases the ratio of carbamazepine epoxide to carbamazepine and this may lead to toxicity. The data on valproic acid are conflicting; it may either increase or decrease clozapine concentrations, and it appears to decrease aripiprazole concentrations. Chlorpromazine possibly increases valproic acid concentrations. Lamotrigine possibly increases clozapine concentrations. Phenobarbital decreases clozapine, haloperidol and chlorpromazine concentrations. Phenytoin decreases quetiapine, clozapine, haloperidol and possibly chlorpromazine concentrations. There are major gaps in the data. In many cases there are no published clinical data on interactions that would be predicted on theoretical grounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Devinsky O. Psychiatric comorbidity in patients with epilepsy: implications for diagnosis and treatment. Epilepsy Behav 2003; 4Suppl. 4: S2–10

    Article  PubMed  Google Scholar 

  2. Matsuura M, Oana Y, Kato M, et al. A multicenter study on the prevalence of psychiatric disorders among new referrals for epilepsy in Japan. Epilepsia 2003; 44: 107–14

    Article  PubMed  Google Scholar 

  3. Blumer D. Psychiatric aspects of intractable epilepsy. Adv Exp Med Biol 2002; 497: 133–47

    Article  PubMed  Google Scholar 

  4. Ovsiew F. Antiepileptic drugs in psychiatry. J Neurol Neurosurg Psychiatry 2004; 75: 1655–61

    Article  PubMed  CAS  Google Scholar 

  5. Bennett MI, Simpson KH. Gabapentin in the treatment of neuropathic pain. Palliat Med 2004; 18: 5–11

    Article  PubMed  Google Scholar 

  6. Besag FMC. Behavioural effects of the new anticonvulsants. Drug Saf 2001; 24: 513–36

    Article  PubMed  CAS  Google Scholar 

  7. Pisani F, Oteri G, Costa C, et al. Effects of psychotropic drugs on seizure threshold. Drug Saf 2002; 25: 91–110

    Article  PubMed  CAS  Google Scholar 

  8. Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: interactions between antiepileptic drugs and other drugs. Lancet Neurol 2003; 2: 473–81

    Article  PubMed  CAS  Google Scholar 

  9. Spina E, Perucca E. Clinical significance of pharmacokinetic interactions between antiepileptic and psychotropic drugs. Epilepsia 2002; 43Suppl. 2: 37–44

    Article  PubMed  Google Scholar 

  10. Mula M, Monaco F, Trimble MR. Use of psychotropic drugs in patients with epilepsy: interactions and seizure risk. Expert Rev Neurother 2004; 4: 953–64

    Article  PubMed  CAS  Google Scholar 

  11. Mancama D, Arranz MJ, Kerwin RW. Pharmacogenomics of psychiatric drug treatment. Curr Opin Mol Ther 2003; 5: 642–9

    PubMed  CAS  Google Scholar 

  12. Desai HD, Seabolt J, Jann MW. Smoking in patients receiving psychotropic medications: a pharmacokinetic perspective. CNS Drugs 2001; 15: 469–94

    Article  PubMed  CAS  Google Scholar 

  13. Centorrino F, Baldessarini RJ, Kando JC, et al. Clozapine and metabolites: concentrations in serum and clinical findings during treatment of chronically psychotic patients. J Clin Psychopharmacol 1994; 14: 119–25

    Article  PubMed  CAS  Google Scholar 

  14. Guillemette C. Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J 2003; 3: 136–58

    Article  PubMed  CAS  Google Scholar 

  15. Lin JH, Wong BK. Complexities of glucuronidation affecting in vitro in vivo extrapolation. Curr Drug Metab 2002; 3: 623–46

    Article  PubMed  CAS  Google Scholar 

  16. Goa KL, Ross SR, Chrisp P. Lamotrigine: a review of its pharmacological properties and clinical efficacy in epilepsy. Drugs 1993; 46: 152–76

    Article  PubMed  CAS  Google Scholar 

  17. Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol 2003; 2: 347–56

    Article  PubMed  CAS  Google Scholar 

  18. Mula M, Monaco F. Antiepileptic-antipsychotic drug interactions: a critical review of the evidence. Clin Neuropharmacol 2002; 25: 280–9

    Article  PubMed  CAS  Google Scholar 

  19. Sproule BA, Naranjo CA, Brenmer KE, et al. Selective serotonin reuptake inhibitors and CNS drug interactions: a critical review of the evidence. Clin Pharmacokinet 1997; 33: 454–71

    Article  PubMed  CAS  Google Scholar 

  20. Patsalos PN, Froscher W, Pisani F, et al. The importance of drug interactions in epilepsy therapy. Epilepsia 2002; 43: 365–85

    Article  PubMed  CAS  Google Scholar 

  21. Abdel-Rahman SM, Leeder JS. Phenobarbital, phenytoin, and carbamazepine. In: Levy RH, Thummel KE, Trager WF, et al., editors. Metabolic drug interactions. Philadelphia (PA): Lippincott Williams & Wilkins, 2000: 673–89

    Google Scholar 

  22. Prior TI, Chue PS, Tibbo P, et al. Drug metabolism and atypical antipsychotics. Eur Neuropsychopharmacol 1999; 9: 301–9

    Article  PubMed  CAS  Google Scholar 

  23. Bork JA, Rogers T, Wedlund PJ, et al. A pilot study on risperidone metabolism: the role of cytochromes P450 2D6 and 3A. J Clin Psychiatry 1999; 60: 469–76

    Article  PubMed  CAS  Google Scholar 

  24. Fang J, Bourin M, Baker GB. Metabolism of risperidone to 9-hydroxyrisperidone by human cytochromes P450 2D6 and 3A4. Naunyn Schmiedebergs Arch Pharmacol 1999; 359: 147–51

    Article  PubMed  CAS  Google Scholar 

  25. Spina E, Scordo MG, D’Arrigo C. Metabolic drug interactions with new psychotropic agents. Fundam Clin Pharmacol 2003; 17: 517–38

    Article  PubMed  CAS  Google Scholar 

  26. de Leon J, Bork J. Risperidone and cytochrome P450 3A [letter]. J Clin Psychiatry 1997; 58: 450

    Article  PubMed  Google Scholar 

  27. Lane HY, Chang WH. Risperidone-carbamazepine interactions: is cytochrome P450 3A involved? J Clin Psychiatry 1998; 59: 430–1

    Article  PubMed  CAS  Google Scholar 

  28. Spina E, Avenoso A, Facciola G, et al. Plasma concentrations of risperidone and 9-hydroxyrisperidone: effect of comedication with carbamazepine or valproate. Ther Drug Monit 2000; 22: 481–5

    Article  PubMed  CAS  Google Scholar 

  29. Takahashi H, Yoshida K, Higuchi H, et al. Development of parkinsonian symptoms after discontinuation of carbamazepine in patients concurrently treated with risperidone: two case reports. Clin Neuropharmacol 2001; 24: 358–60

    Article  PubMed  CAS  Google Scholar 

  30. Spina E, Scordo MG, Avenoso A, et al. Adverse drug interaction between risperidone and carbamazepine in a patient with chronic schizophrenia and deficient CYP2D6 activity. J Clin Psychopharmacol 2001; 21: 108–9

    Article  PubMed  CAS  Google Scholar 

  31. Ono S, Mihara K, Suzuki A, et al. Significant pharmacokinetic interaction between risperidone and carbamazepine: its relationship with CYP2D6 genotypes. Psychopharmacology 2002; 162: 50–4

    Article  PubMed  CAS  Google Scholar 

  32. Yatham LN, Grossman F, Augustyns I, et al. Mood stabilisers plus risperidone or placebo in the treatment of acute mania. International, double-blind, randomised controlled trial [erratum appears in Br J Psychiatry 2003 Apr; 182: 369]. Br J Psychiatry 2003; 182: 141–7

    Article  PubMed  Google Scholar 

  33. Mula M, Monaco F. Carbamazepine-risperidone interactions in patients with epilepsy. Clin Neuropharmacol 2002; 25: 97–100

    Article  PubMed  CAS  Google Scholar 

  34. Callaghan JT, Bergstrom RF, Ptak LR, et al. Olanzapine: pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet 1999; 37: 177–93

    Article  PubMed  CAS  Google Scholar 

  35. Linnet K. Glucuronidation of olanzapine by cDNA-expressed human UDP-glucuronosyltransferases and human liver microsomes. Hum Psychopharmacol 2002; 17: 233–8

    Article  PubMed  CAS  Google Scholar 

  36. Lucas RA, Gilfillan DJ, Bergstrom RF. A pharmacokinetic interaction between carbamazepine and olanzapine: observations on possible mechanism. Eur J Clin Pharmacol 1998; 54: 639–43

    Article  PubMed  CAS  Google Scholar 

  37. Skogh E, Reis M, Dahl ML, et al. Therapeutic drug monitoring data on olanzapine and its N-demethyl metabolite in the naturalistic clinical setting. Ther Drug Monit 2002; 24: 518–26

    Article  PubMed  CAS  Google Scholar 

  38. DeVane CL, Nemeroff CB. Clinical pharmacokinetics of quetiapine: an atypical antipsychotic. Clin Pharmacokinet 2001; 40: 509–22

    Article  PubMed  CAS  Google Scholar 

  39. Fitzgerald BJ, Okos AJ. Elevation of carbamazepine-10, 11-epoxide by quetiapine. Pharmacotherapy 2002; 22: 1500–3

    Article  PubMed  Google Scholar 

  40. Taylor D. Pharmacokinetic interactions involving clozapine. Br J Psychiatry 1997; 171: 109–12

    Article  PubMed  CAS  Google Scholar 

  41. Fang J, Coutts RT, McKenna KF, et al. Elucidation of individual cytochrome P450 enzymes involved in the metabolism of clozapine. Naunyn Schmiedebergs Arch Pharmacol 1998; 358: 592–9

    Article  PubMed  CAS  Google Scholar 

  42. Raitasuo V, Lehtovaara R, Huttunen MO. Carbamazepine and plasma levels of clozapine [letter]. Am J Psychiatry 1993; 150: 169

    PubMed  CAS  Google Scholar 

  43. Raitasuo V, Lehtovaara R, Huttunen MO. Effect of switching carbamazepine to oxcarbazepine on the plasma levels of neuroleptics: a case report. Psychopharmacology 1994; 116: 115–6

    Article  PubMed  CAS  Google Scholar 

  44. Jerling M, Lindstrom L, Bondesson U, et al. Fluvoxamine inhibition and carbamazepine induction of the metabolism of clozapine: evidence from a therapeutic drug monitoring service. Ther Drug Monit 1994; 16: 368–74

    Article  PubMed  CAS  Google Scholar 

  45. Tiihonen J, Vartiainen H, Hakola P. Carbamazepine-induced changes in plasma levels of neuroleptics. Pharmacopsychiatry 1995; 28: 26–8

    Article  PubMed  CAS  Google Scholar 

  46. Junghan U, Albers M, Woggon B. Increased risk of hematological side-effects in psychiatric patients treated with clozapine and carbamazepine? [letter]. Pharmacopsychiatry 1993; 26: 262

    Article  PubMed  CAS  Google Scholar 

  47. Langbehn DR, Alexander B. Increased risk of side-effects in psychiatric patients treated with clozapine and carbamazepine: a reanalysis [letter]. Pharmacopsychiatry 2000; 33: 196

    PubMed  CAS  Google Scholar 

  48. Caccia S. New antipsychotic agents for schizophrenia: pharmacokinetics and metabolism update. Curr Opin Investig Drugs 2002; 3: 1073–80

    PubMed  CAS  Google Scholar 

  49. Gillet G, Dormerque L, Canal M, et al. Amisulpride does not inhibit cytochrome P450 isoenzymes. Eur Neuropsychopharmacol 2000; 10(3): S331–2

    Article  Google Scholar 

  50. Caley CF, Weber SS. Sulpiride: an antipsychotic with selective dopaminergic antagonist properties. Ann Pharmacother 1995; 29: 152–60

    PubMed  CAS  Google Scholar 

  51. Prakash C, Kamel A, Gummerus J, et al. Metabolism and excretion of a new antipsychotic drug, ziprasidone, in humans. Drug Metab Dispos 1997; 25: 863–72

    PubMed  CAS  Google Scholar 

  52. Prakash C, Kamel A, Cui D, et al. Identification of the major human liver cytochrome P450 isoform(s) responsible for the formation of the primary metabolites of ziprasidone and prediction of possible drug interactions. Br J Clin Pharmacol 2000; 49Suppl. 1: 35S–42S

    PubMed  CAS  Google Scholar 

  53. Wilner KD, Demattos SB, Anziano RJ, et al. Ziprasidone and the activity of cytochrome P450 2D6 in healthy extensive metabolizers. Br J Clin Pharmacol 2000; 49Suppl. 1: 43S–7S

    PubMed  CAS  Google Scholar 

  54. Miceli JJ, Anziano RJ, Robarge L, et al. The effect of carbamazepine on the steady-state pharmacokinetics of ziprasidone in healthy volunteers. Br J Clin Pharmacol 2000; 49Suppl. 1: 65S–70S

    PubMed  CAS  Google Scholar 

  55. Winans E. Aripiprazole. Am J Health Syst Pharm 2003; 60: 2437–45

    PubMed  CAS  Google Scholar 

  56. Kudo S, Ishizaki T. Pharmacokinetics of haloperidol: an update. Clin Pharmacokinet 1999; 37: 435–56

    Article  PubMed  CAS  Google Scholar 

  57. Brockmoller J, Kirchheiner J, Schmider J, et al. The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin Pharmacol Ther 2002; 72: 438–52

    Article  PubMed  CAS  Google Scholar 

  58. Kidron R, Averbuch I, Klein E, et al. Carbamazepine-induced reduction of blood levels of haloperidol in chronic schizophrenia. Biol Psychiatry 1985; 20: 219–22

    Article  PubMed  CAS  Google Scholar 

  59. Jann MW, Ereshefsky L, Saklad SR, et al. Effects of carbamazepine on plasma haloperidol levels. J Clin Psychopharmacol 1985; 5: 106–9

    Article  PubMed  CAS  Google Scholar 

  60. Arana GW, Goff DC, Friedman H, et al. Does carbamazepine-induced reduction of plasma haloperidol levels worsen psychotic symptoms? Am J Psychiatry 1986; 143: 650–1

    PubMed  CAS  Google Scholar 

  61. Martin Munoz JC, Morinigo Dominguez AV, Mateo M, et al, editor. Carbamazepine: an effective adjuvant treatment in the schizophrenias [in Spanish]. Actas Luso Esp Neurol, Psiquiatr Cienc Afines 1989; 17: 245–50

  62. Kahn EM, Schulz SC, Perel JM, et al. Change in haloperidol level due to carbamazepine: a complicating factor in combined medication for schizophrenia. J Clin Psychopharmacol 1990; 10: 54–7

    Article  PubMed  CAS  Google Scholar 

  63. Iwahashi K, Miyatake R, Suwaki H, et al. The drug-drug interaction effects of haloperidol on plasma carbamazepine levels. Clin Neuropharmacol 1995; 18: 233–6

    Article  PubMed  CAS  Google Scholar 

  64. Hesslinger B, Normann C, Langosch JM, et al. Effects of carbamazepine and valproate on haloperidol plasma levels and on psychopathologic outcome in schizophrenic patients. J Clin Psychopharmacol 1999; 19: 310–5

    Article  PubMed  CAS  Google Scholar 

  65. Hirokane G, Someya T, Takahashi S, et al. Interindividual variation of plasma haloperidol concentrations and the impact of concomitant medications: the analysis of therapeutic drug monitoring data. Ther Drug Monit 1999; 21: 82–6

    Article  PubMed  CAS  Google Scholar 

  66. Yukawa E, Hokazono T, Funakoshi A, et al. Epidemiologic investigation of the relative clearance of haloperidol by mixed-effect modeling using routine clinical pharmacokinetic data in Japanese patients. J Clin Psychopharmacol 2000; 20: 685–90

    Article  PubMed  CAS  Google Scholar 

  67. Fukuda R. Factors affecting serum haloperidol level assessed by longitudinal therapeutic monitoring. Prog Neuropsychopharmacol Biol Psychiatry 2000; 24: 1299–318

    Article  PubMed  CAS  Google Scholar 

  68. Yasui-Furukori N, Kondo T, Mihara K, et al. Significant dose effect of carbamazepine on reduction of steady-state plasma concentration of haloperidol in schizophrenic patients. J Clin Psychopharmacol 2003; 23: 435–40

    Article  PubMed  CAS  Google Scholar 

  69. Brayley J, Yellowlees P. An interaction between haloperidol and carbamazepine in a patient with cerebral palsy. Aust N Z J Psychiatry 1987; 21: 605–7

    Article  PubMed  CAS  Google Scholar 

  70. Iwahashi K. Significantly higher plasma haloperidol level during cotreatment with carbamazepine may herald cardiac change. Clin Neuropharmacol 1996; 19: 267–70

    Article  PubMed  CAS  Google Scholar 

  71. Suzuki Y, Someya T, Shimoda K, et al. Importance of the cytochrome P450 2D6 genotype for the drug metabolic interaction between chlorpromazine and haloperidol. Ther Drug Monit 2001; 23: 363–8

    Article  PubMed  CAS  Google Scholar 

  72. Levy RH, Shen DD, Abbott FS, et al. Valproic acid chemistry, biotransformation, and pharmacokinetics. In: Levy RH, Mattson RH, Meldrum BS, et al., editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2002: 780–800

    Google Scholar 

  73. van Wattum PJ. Valproic acid and risperidone. J Am Acad Child Adolesc Psychiatry 2001; 40: 866–7

    Article  PubMed  Google Scholar 

  74. Vitiello B. Valproic acid and risperidone [letter]. J Am Acad Child Adolesc Psychiatry 2001; 40: 867

    Article  Google Scholar 

  75. Bertoldo M. Valproic acid and risperidone [letter]. J Am Acad Child Adolesc Psychiatry 2002; 41: 632

    Article  PubMed  Google Scholar 

  76. Sund JK, Aamo T, Spigset O. Valproic acid and risperidone: a drug interaction? J Am Acad Child Adolesc Psychiatry 2003; 42: 1–2

    Article  PubMed  Google Scholar 

  77. Gonzalez-Heydrich J, Raches D, Wilens TE, et al. Retrospective study of hepatic enzyme elevations in children treated with olanzapine, divalproex, and their combination. J Am Acad Child Adolesc Psychiatry 2003; 42: 1227–33

    Article  PubMed  Google Scholar 

  78. Freeman MP, Stoll AL. Mood stabilizer combinations: a review of safety and efficacy. Am J Psychiatry 1998; 155: 12–21

    PubMed  CAS  Google Scholar 

  79. Centorrino F, Baldessarini RJ, Kando J, et al. Serum concentrations of clozapine and its major metabolites: effects of cotreatment with fluoxetine or valproate. Am J Psychiatry 1994; 151: 123–5

    PubMed  CAS  Google Scholar 

  80. Finley P, Warner D. Potential impact of valproic acid therapy on clozapine disposition. Biol Psychiatry 1994; 36: 487–8

    Article  PubMed  CAS  Google Scholar 

  81. Longo LP, Salzman C. Valproic acid effects on serum concentrations of clozapine and norclozapine [letter]. Am J Psychiatry 1995; 152: 650

    PubMed  CAS  Google Scholar 

  82. Costello LE, Suppes T. A clinically significant interaction between clozapine and valproate. J Clin Psychopharmacol 1995; 15: 139–41

    Article  PubMed  CAS  Google Scholar 

  83. Facciola G, Avenoso A, Scordo MG, et al. Small effects of valproic acid on the plasma concentrations of clozapine and its major metabolites in patients with schizophrenic or affective disorders. Ther Drug Monit 1999; 21: 341–5

    Article  PubMed  CAS  Google Scholar 

  84. Conca A, Beraus W, Konig P, et al. A case of pharmacokinetic interference in comedication of clozapine and valproic acid. Pharmacopsychiatry 2000; 33: 234–5

    Article  PubMed  CAS  Google Scholar 

  85. Kando JC, Tohen M, Castillo J, et al. Concurrent use of clozapine and valproate in affective and psychotic disorders. J Clin Psychiatry 1994; 55: 255–7

    PubMed  CAS  Google Scholar 

  86. Citrome L, Josiassen R, Bark N, et al. Pharmacokinetics of aripiprazole and concomitant lithium and valproate. J Clin Pharmacol 2005; 45: 89–93

    Article  PubMed  CAS  Google Scholar 

  87. Ishizaki T, Chiba K, Saito M, et al. The effects of neuroleptics (haloperidol and chlorpromazine) on the pharmacokinetics of valproic acid in schizophrenic patients. J Clin Psychopharmacol 1984; 4: 254–61

    Article  PubMed  CAS  Google Scholar 

  88. Richens A. Pharmacokinetic and pharmacodynamic drug interactions during treatment with vigabatrin. Acta Neurol Scand Suppl 1995; 162: 43–6

    PubMed  CAS  Google Scholar 

  89. Meldrum BS, Leach M. The mechanism of action of lamotrigine. Rev Contemp Pharmacother 1994; 5: 107–14

    Google Scholar 

  90. Yuen AW, Land G, Weatherley BC, et al. Sodium valproate acutely inhibits lamotrigine metabolism. Br J Clin Pharmacol 1992; 33: 511–3

    Article  PubMed  CAS  Google Scholar 

  91. Kossen M, Selten JP, Kahn RS. Elevated clozapine plasma level with lamotrigine [letter]. Am J Psychiatry 2001; 158: 1930

    Article  PubMed  CAS  Google Scholar 

  92. Magdalou J, Herber R, Bidault R, et al. In vitro N-glucuronidation of a novel antiepileptic drug, lamotrigine, by human liver microsomes. J Pharmacol Exp Ther 1992; 260: 1166–73

    PubMed  CAS  Google Scholar 

  93. Walker J, Patsalos PN. The tolerability and safety profile of gabapentin. Rev Contemp Pharmacother 1996; 7: 249–57

    CAS  Google Scholar 

  94. Benedetti MS. Enzyme induction and inhibition by new antiepileptic drugs: a review of human studies. Fundam Clin Pharmacol 2000; 14: 301–19

    Article  PubMed  CAS  Google Scholar 

  95. Patsalos PN. The mechanism of action of topiramate. Rev Contemp Pharmacother 1999; 10: 147–53

    CAS  Google Scholar 

  96. Nallani SC, Glauser TA, Hariparsad N, et al. Dose-dependent induction of cytochrome P450 (CYP) 3A4 and activation of pregnane X receptor by topiramate. Epilepsia 2003; 44: 1521–8

    Article  PubMed  CAS  Google Scholar 

  97. Vieta E, Sanchez-Moreno J, Goikolea JM, et al. Effects on weight and outcome of long-term olanzapine-topiramate combination treatment in bipolar disorder. J Clin Psychopharmacol 2004; 24: 374–8

    Article  PubMed  CAS  Google Scholar 

  98. Baptista T, Kin NM, Beaulieu S, et al. Obesity and related metabolic abnormalities during antipsychotic drug administration: mechanisms, management and research perspectives. Pharmacopsychiatry 2002; 35: 205–19

    Article  PubMed  CAS  Google Scholar 

  99. Dursun SM, Devarajan S. Clozapine weight gain, plus topiramate weight loss [letter]. Can J Psychiatry 2000; 45: 198

    PubMed  CAS  Google Scholar 

  100. Doose DR, Kohl KA, Desai-Krieger D. No clinically significant effect of topiramate on haloperidol concentration [abstract]. Eur Neuropsychopharmacol 1999; 9: S357

    Article  Google Scholar 

  101. Bialer M, Doose DR, Murthy B, et al. Pharmacokinetic interactions of topiramate. Clin Pharmacokinet 2004; 43: 763–80

    Article  PubMed  CAS  Google Scholar 

  102. Sommerville KW, Collins SD. Tiagabine chemistry, biotransformation, and pharmacokinetics. In: Levy RH, Mattson RH, Meldrum BS, et al., editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2002: 681–90

    Google Scholar 

  103. Gao XM, Kakigi T, Friedman MB, et al. Tiagabine inhibits haloperidol-induced oral dyskinesias in rats. J Neural Transm Gen Sect 1994; 95: 63–9

    Article  PubMed  CAS  Google Scholar 

  104. Bialer M. Oxcarbazepine chemistry, biotransformation, and pharmacokinetics. In: Levy RH, Mattson RH, Meldrum BS, et al., editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2002: 459–65

    Google Scholar 

  105. Muscatello MR, Pacetti M, Cacciola M, et al. Plasma concentrations of risperidone and olanzapine during coadministration with oxcarbazepine. Epilepsia 2005; 46: 771–4

    Article  CAS  Google Scholar 

  106. Nicolas JM, Collart P, Gerin B, et al. In vitro evaluation of potential drug interactions with levetiracetam, a new antiepileptic agent. Drug Metab Dispos 1999; 27: 250–4

    PubMed  CAS  Google Scholar 

  107. Busch JA, Strand JA, Posvar EL. Pregabalin (CI-1008) singledose pharmacokinetics and safety/tolerance in healthy subjects after oral administration of pregabalin solution or capsule doses [abstract]. Epilepsia 1998; 39Suppl. 6: 58

    Google Scholar 

  108. Bialer M, Johannessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the Sixth Eilat Conference (EILAT VI). Epilepsy Res 2002; 51: 31–71

    Article  PubMed  CAS  Google Scholar 

  109. Glue P, Banfield CR, Perhach JL, et al. Pharmacokinetic interactions with felbamate. In vitro-in vivo correlation. Clin Pharmacokinet 1997; 33: 214–24

    Article  PubMed  CAS  Google Scholar 

  110. Peters DH, Sorkin EM. Zonisamide: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in epilepsy. Drugs 1993; 45: 760–87

    Article  PubMed  CAS  Google Scholar 

  111. Mimaki T. Clinical pharmacology and therapeutic drug monitoring of zonisamide. Ther Drug Monit 1998; 20: 593–7

    Article  PubMed  CAS  Google Scholar 

  112. Martin H, Sarsat JP, de W, et al. Induction of cytochrome P450 2B6 and 3A4 expression by phenobarbital and cyclophosphamide in cultured human liver slices. Pharm Res 2003; 20: 557–68

    Article  PubMed  CAS  Google Scholar 

  113. Gerbal-Chaloin S, Pascussi JM, Pichard-Garcia L, et al. Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab Dispos 2001; 29: 242–51

    PubMed  CAS  Google Scholar 

  114. Anderson GD. Phenobarbital and other barbiturates: chemistry, biotransformation and pharmacokinetics. In: Levy RH, Mattson RH, Meldrum BS, et al., editors. Antiepileptic drugs, chapter 51. Philadelphia (PA): Lippincott Williams and Wilkins, 2002: 496–503

    Google Scholar 

  115. Lane HY, Su KP, Chang WH, et al. Elevated plasma clozapine concentrations after phenobarbital discontinuation. J Clin Psychiatry 1998; 59: 131–3

    Article  PubMed  CAS  Google Scholar 

  116. Facciola G, Avenoso A, Spina E, et al. Inducing effect of phenobarbital on clozapine metabolism in patients with chronic schizophrenia. Ther Drug Monit 1998; 20: 628–30

    Article  PubMed  CAS  Google Scholar 

  117. Linnoila M, Viukari M, Vaisanen K, et al. Effect of anticonvulsants on plasma haloperidol and thioridazine levels. Am J Psychiatry 1980; 137: 819–21

    PubMed  CAS  Google Scholar 

  118. Yukawa E, Hokazono T, Yukawa M, et al. Population pharmacokinetics of haloperidol using routine clinical pharmacokinetic data in Japanese patients. Clin Pharmacokinet 2002; 41: 153–9

    Article  PubMed  CAS  Google Scholar 

  119. Loga S, Curry S, Lader M. Interactions of orphenadrine and phenobarbitone with chlorpromazine: plasma concentrations and effects in man. Br J Clin Pharmacol 1975; 2: 197–208

    Article  PubMed  CAS  Google Scholar 

  120. Haidukewych D, Rodin EA. Effect of phenothiazines on serum antiepileptic drug concentrations in psychiatric patients with seizure disorder. Ther Drug Monit 1985; 7: 401–4

    Article  PubMed  CAS  Google Scholar 

  121. Brown TR, LeDuc B. Phenytoin and other hydantoins: chemistry and biotransformations. In: Levy RH, Mattson RH, Meldrum BS, et al., editors. Antiepileptic drugs. Philadelphia (PA): Lippincott Williams and Wilkins, 2002: 565–80

    Google Scholar 

  122. Kutt H, McDowell F. Management of epilepsy with diphenylhydantoin sodium: dosage regulation for problem patients. JAMA 1968; 203: 969–72

    Article  PubMed  CAS  Google Scholar 

  123. Houghton GW, Richens A. Inhibition of phenytoin metabolism by other drugs used in epilepsy. Int J Clin Pharmacol Biopharm 1975; 12: 210–6

    PubMed  CAS  Google Scholar 

  124. Sanderson DR. Drug interaction between risperidone and phenytoin resulting in extrapyramidal symptoms [letter]. J Clin Psychiatry 1996; 57: 177

    PubMed  CAS  Google Scholar 

  125. Wong YW, Yeh C, Thyrum PT. The effects of concomitant phenytoin administration on the steady-state pharmacokinetics of quetiapine. J Clin Psychopharmacol 2001; 21: 89–93

    Article  PubMed  CAS  Google Scholar 

  126. Lieberman JA, Kane JM, Johns CA. Clozapine: guidelines for clinical management. J Clin Psychiatry 1989; 50: 329–38

    PubMed  CAS  Google Scholar 

  127. Miller DD. Effect of phenytoin on plasma clozapine concentrations in two patients. J Clin Psychiatry 1991; 52: 23–5

    PubMed  CAS  Google Scholar 

  128. Landry P. Gabapentin for clozapine-related seizures. Am J Psychiatry 2001; 158: 1930–1

    Article  PubMed  CAS  Google Scholar 

  129. Gex-Fabry M, Balant-Gorgia AE, Balant LP. Therapeutic drug monitoring databases for postmarketing surveillance of drug-drug interactions: evaluation of a paired approach for psychotropic medication. Ther Drug Monit 1997; 19: 1–10

    Article  PubMed  CAS  Google Scholar 

  130. Jann MW, Fidone GS, Hernandez JM, et al. Clinical implications of increased antipsychotic plasma concentrations upon anticonvulsant cessation. Psychiatry Res 1989; 28: 153–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the many pharmaceutical companies that provided information on the interactions, which supplemented the literature search. The authors are not aware of any conflicts of interest. The preparation of this paper was not supported by funding from any pharmaceutical company. The authors have attended conferences and given lectures sponsored by a number of different pharmaceutical companies over the years. They have also had past research funding from Fisons, GlaxoSmithKline and Roche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M.C. Besag.

Additional information

Twinwoods Health Resource Centre, Milton Road, Bedford, MK41 6AT, UK

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besag, F.M., Berry, D. Interactions between Antiepileptic and Antipsychotic Drugs. Drug-Safety 29, 95–118 (2006). https://doi.org/10.2165/00002018-200629020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200629020-00001

Keywords

Navigation