Skip to main content
Log in

Drug-Induced Lymphopenia

Focus on CD4+ and CD8+ Cells

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Drug-induced lymphopenia is a common adverse event. Some drugs, in particular those used in the treatment of malignancies and autoimmune diseases, inevitably affect the percentages and proportions of lymphocytes in the peripheral blood. Some other drugs exert only minor effects and their clinical relevance cannot be established with certainty. Most cytotoxic and immunosuppressive drugs affect CD4+ T cells more profoundly. Since their regeneration seems to be slower than that of CD8+ T cells, the frequent occurrence of CD4+ lymphopenia may merely reflect this phenomenon. As in HIV infection, critically low numbers of CD4+ cells, irrespective of the cause, predisposes to opportunistic infections. There is no such critically low value for CD8+ cells, and their essential role in various pathological conditions should also be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landmann RM, Muller FB, Perini C, et al. Changes of immunoregulatory cells induced by psychological and physical stress: relationship to plasma catecholamines. Clin Exp Immunol 1984; 58: 127–35

    PubMed  CAS  Google Scholar 

  2. Shinkai S, Watanabe S, Asai H, et al. Cortisol response to exercise and post-exercise suppression of blood lymphocyte subset counts. Int J Sports Med 1996; 17: 597–603

    Article  PubMed  CAS  Google Scholar 

  3. Laurence J. T-cell subsets in health, infectious disease, and id-iopathic CD4+ T lymphocytopenia. Ann Int Med 1993; 119: 55–62

    PubMed  CAS  Google Scholar 

  4. Bofill M, Janossy G, Lee CA, et al. Laboratory control values for CD4 and CD8 T lymphocytes: implications for HIV-1 diagnosis. Clin Exp Immunol 1992; 88: 243–52

    Article  PubMed  CAS  Google Scholar 

  5. Giorgi JV, Cheng HL, Margolick JB, et al. Quality control in the flow cytometric measurement of T-lymphocyte subsets: the Multicenter AIDS Cohort study experience. Clin Immunol Immunopathol 1990; 55: 173–86

    Article  PubMed  CAS  Google Scholar 

  6. Vuillier F, Lapresle C, Dighiero G. Comparative analysis of CD4-4B4 and CD4-2H4 lymphocyte subpopulations in HIV negative homosexual, HIV seropositive and healthy subjects. Clin Exp Immunol 1988; 71: 8–12

    PubMed  CAS  Google Scholar 

  7. Castelino DJ, McNair P, Kay TWH. Lymphocytopenia in a hospital population—what does it mean? Aust NZ J Med 1997; 27: 170–4

    Article  CAS  Google Scholar 

  8. Prekates A, Kyprianou T, Paniara O, et al. Pneumocystis carinii pneumonia in a HIV-seronegative patient with untreated rheumatoid arthritis and CD4+ T-lymphocytopenia. Eur Respir J 1997; 10: 1184–6

    Article  PubMed  CAS  Google Scholar 

  9. Guma M, Krakauer R. CD4+ lymphocytopenia in systemic lupus erythematosus. Ann Int Med 1994; 120: 168

    PubMed  CAS  Google Scholar 

  10. Bachelez H, Schremmer B, Cadronel J, et al. Fulminant Pneumocystis carinii pneumonia in 4 patients with dermatomyositis. Arch Intern Med 1997; 157: 1501–3

    Article  PubMed  CAS  Google Scholar 

  11. Duffy KN, Duffy CM, Gladman DD. Infection and disease activity in systemic lupus erythematosus: a review of hospitalized patients. J Rheumatol 1991; 18: 1180–4

    PubMed  CAS  Google Scholar 

  12. Fauci AS. CD4 + T-lymphocytopenia without HIV infection: no lights, no camera, just facts. N Engl J Med 1993; 328(6): 429–31

    Article  PubMed  CAS  Google Scholar 

  13. Laurence J, Mitra D, Steiner M, et al. Apoptotic depletion of CD4+ T cells in idiopathic CD4+ T lymphocytopenia. J Clin Invest 1996; 97: 672–80

    Article  PubMed  CAS  Google Scholar 

  14. Smith DK, Neal JJ, Holmberg SD. Unexplained opportunistic infections and CD4 T-lymphopenia without HIV infection: an investigation of cases in the United States. N Engl J Med 1993; 328: 373–9

    Article  PubMed  CAS  Google Scholar 

  15. Anzalone G, Cei M, Vizzacaro A, et al. M. Kansasii pulmonary disease in idiopathic CD4+ T-lymphocytopenia. Eur Respir J 1996; 9: 1754–6

    Article  PubMed  CAS  Google Scholar 

  16. Rosen FS, Wedgwood RJP, Eibl M, et al. Primary immunodeficiency diseases. Clin Exp Immunol 1995; 99 Suppl. 1: 2–24

    Google Scholar 

  17. Reinherz EL, O’Brien C, Rosenthal P, et al. The cellular basis for viral-induced immunodeficiency: analysis by monoclonal antibodies. J Immunol 1980; 125: 1269–73

    PubMed  CAS  Google Scholar 

  18. Carney WP, Rubin RH, Hoffman RA, et al. Analysis of T lymphocyte subsets in cytomegalovirus mononucleosis. J Immunol 1981; 126: 2114–6

    PubMed  CAS  Google Scholar 

  19. Sheridan JF, Beck M, Aurelian L, et al. Immunity to herpes simplex virus type 2 IV: impaired lymphokine production during recrudescence correlates with imbalance in T lymphocyte subsets. J Immunol 198; 129: 326-31

  20. Soiffer RJ, Gonin R, Murray C, et al. Prediction of graft-versus-host disease by phenotypic analysis of early immune reconstitution after CD6-depleted allogeneic bone marrow transplantation. Blood 1993; 82: 2216–23

    PubMed  CAS  Google Scholar 

  21. Hiroki A, Nakamura S, Shinohara M, et al. Significance of oral examination in chronic graft versus host disease. J Oral Pathol Med 1994; 23: 209–15

    Article  PubMed  CAS  Google Scholar 

  22. Fowell D, Powrie F, Saoudi A, et al. The role of subsets of CD4+ Tcells in autoimmunity. Ciba Found Symp 1995; 195: 173–82

    PubMed  CAS  Google Scholar 

  23. Yoneda R, Yokono K, Nagata M, et al. CD8 cytotoxic T-cell clone rapidly transfers autoimmune diabetes in very young NOD and MHC class I-compatible scid mice. Diabetologia 1997; 40: 1044–52

    Article  PubMed  CAS  Google Scholar 

  24. Harrison LC, Dempsey-Collier M, Kramer DR, et al. Aerosol insulin induces regulatory CD8 gamma delta T cells that prevent murine insulin-dependent diabetes. J Exp Med 1996; 184: 2167–74

    Article  PubMed  CAS  Google Scholar 

  25. Powrie F, Correa-Oliveira R, Mauze S, et al. Regulatory interactions between CD45RB high and CD45RB low CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med 1994; 179: 589–600

    Article  PubMed  CAS  Google Scholar 

  26. Iannone F, Cauli A, Yanni G, et al. T-lymphocyte immunophenotyping in polymyositis and dermatomyositis. Br J Rheumatol 1996; 35: 839–45

    Article  PubMed  CAS  Google Scholar 

  27. Kaaba SA, Al-Harbi SA. Abnormal lymphocyte subsets in Kuwaiti patients with type-l insulin-dependent diabetes mellitus and their first-degree relatives. Immunol Lett 1995; 47: 209–13

    Article  PubMed  CAS  Google Scholar 

  28. Togun RA, Resetkova E, Kawai K, et al. Activation of CD8(+) T lymphocytes in insulin-dependent diabetes mellitus. Clin Immunol Immunopathol 1997; 82: 243–9

    Article  PubMed  CAS  Google Scholar 

  29. Neidhart M, Pataki F, Michel BA, et al. CD45 isoforms expression on CD4+ and CD8+ peripheral blood T-lymphocytes is related to auto-immune processes and hematological manifestations in systemic lupus erythematosus. Schweiz Med Wochenschr 1996; 126: 1922–5

    PubMed  CAS  Google Scholar 

  30. Blay JY, Chauvin F, Le Cesne A, et al. Early lymphopenia after cytotoxic chemotherapy as a risk factor for febrile neutropenia. J Clin Oncol 1996; 14: 636–43

    PubMed  CAS  Google Scholar 

  31. Eisenthal A, Skornick Y, Ron I, et al. Phenotypic and functional profile of peripheral blood mononuclear cells isolated from melanoma patients undergoing combined immunotherapy and chemotherapy. Cancer Immunol Immunother 1993; 37: 367–72

    Article  PubMed  CAS  Google Scholar 

  32. Mackall CL, Fleisher TA, Brown MR, et al. Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood 1994; 84: 2221–8

    PubMed  CAS  Google Scholar 

  33. Lissoni P, Tancini G, Archili C, et al. Changes in T lymphocyte subsets after single dose epirubicin. Eur J Cancer 1990; 26: 767–8

    Article  PubMed  CAS  Google Scholar 

  34. Yocum DR, Olson CS, Nordensson K. Effects of methotrexate + cyclosporine on mononuclear cell proliferation and lymphocyte surface markers in rheumatoid arthritis patients. Arthritis Rheum 1994; 37 Suppl.: S254

    Google Scholar 

  35. Houtman PM, Stenger AA, Bruyn CA, et al. Methotrexate may affect certain T lymphocyte subsets in rheumatoid arthritis resulting in susceptibility to Pneumocystis carinii infection. J Rheumatol 1994; 21: 1168–89

    PubMed  CAS  Google Scholar 

  36. Lacki JK, Schochat T, Sobieska M, et al. Immunological studies in patients with rheumatoid arthritis treated with methotrexate or cyclophosphamide. Z Rheumatol 1994; 53: 76–82

    PubMed  CAS  Google Scholar 

  37. Okuno K, Ohnishi H, Nakajima I, et al. Intrahepatic infusion of interleukin-2 (IL-2) with mitomycin C (MMC)/5-fluorouracil (5-FU) through an implantable pump for the treatment of liver metastases [abstract]. Proc Am Assoc Cancer Res 1992; 33: 246

    Google Scholar 

  38. Kulke MH, Vance EA. Pneumocystis carinii pneumonia in patients receiving chemotherapy for breast cancer. Clin Infect Dis 1997; 25: 215–8

    Article  PubMed  CAS  Google Scholar 

  39. Martin-Suarez I, D’Cruz D, Mansoor M, et al. Immunosuppressive treatment in severe connective tissue diseases: effects of low dose intravenous cyclophosphamide. Ann Rheum Dis 1997; 56: 481–7

    Article  PubMed  CAS  Google Scholar 

  40. Kraut EH, Neff JC, Bouroncle BA, et al. Immunosuppressive effects of pentostatin. J Clin Oncol 1990; 8: 848–55

    PubMed  CAS  Google Scholar 

  41. Thaler J, Grunewald K, Gattringer C, et al. Long-term follow-up of patients with hairy cell leukaemia treated with pentostatin: lymphocyte subpopulations and residual bone marrow infiltration. Br J Haematol 1995; 84: 75–82

    Article  Google Scholar 

  42. Johnson PJ, McFarlane IG, Williams R. Azathioprine for longterm maintenance of remission in autoimmune hepatitis. N Engl J Med 1995; 333: 958–63

    Article  PubMed  CAS  Google Scholar 

  43. Beutler E, Koziol JA, McMillan R, et al. Marrow suppression produced by repeated doses of cladribine. Acta Haematol 1994; 91: 10–5

    Article  PubMed  CAS  Google Scholar 

  44. Dighiero G. Adverse and beneficial immunological effects of purine nucleoside analogues. Hematol Cell Ther 1996; 38 (Suppl. 2): S75–81

    PubMed  CAS  Google Scholar 

  45. von Rohr A, Ghosh AK, Thatcher N, et al. Serial immunophenotype analysis of peripheral blood T cells, T cell subpopulations, B cells, and natural killer (NK) cells in patients treated with 2-chlorodeoxyadenosine (2-CDA) [abstract]. Blood 1993; 82 Suppl. 1: 521a

    Google Scholar 

  46. Reckzeh B, Merte H, Pfluger KH, et al. Severe lymphocytopenia and interstitial pneumonia in patients treated with paclitaxel and simultaneous radiotherapy for non-small-cell lung cancer. J Clin Oncol 1996; 14: 1071–6

    PubMed  CAS  Google Scholar 

  47. Mackall CL, Fleisher TA, Brown MR, et al. Distinctions between CD8+ and CD4+ T-cell regenerative pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood 1997; 89: 3700–7

    PubMed  CAS  Google Scholar 

  48. Flaherty DK, McGarity KL, Winzenburger P, et al. The effect of continuous corticosterone administration on lymphocyte subpopulations in the peripheral blood of the Fischer 344 rat as determined by two color flow cytometric analyses. Immunopharmacol Immunotoxicol 1993; 15: 583–604

    Article  PubMed  CAS  Google Scholar 

  49. Sackstein R, Borenstein M. The effects of corticosteroids on lymphocyte recirculation in humans: analysis of the mechanism of impaired lymphocyte migration to lymph node following methylprednisolone administration. J Invest Med 1995; 43: 68–77

    CAS  Google Scholar 

  50. Bast Jr RC, Reinherz EL, Maver C, et al. Contrasting effects of cyclophosphamide and prednisolone on the phenotype of human peripheral blood leukocytes. Clin Immunol Immunopathol 1983; 28: 101–14

    Article  PubMed  Google Scholar 

  51. Tornatore KM, Reed K, Venuto R. 24-hour immunologic assessment of CD4+ and CD8+ lymphocytes in renal transplant recipients receiving chronic methylprednisolone. Clin Nephrol 1995; 44: 290–8

    PubMed  CAS  Google Scholar 

  52. Godeau B, Coutant-Perronne V, Le Thi Huong D, et al. Pneumocystis carinii pneumonia in the course of connective tissue disease: report of 34 cases. J Rheumatol 1994; 21: 246–51

    PubMed  CAS  Google Scholar 

  53. Isaacs JD, Manna VK, Rapson N, et al. CAMPATH-1H in rheumatoid arthritis — an intravenous dose-ranging study. Br J Rheumatol 1996; 35: 231–40

    Article  PubMed  CAS  Google Scholar 

  54. Buysmann S, Bemelman FJ, Schellekens PT, et al. Activation and increased expression of adhesion molecules on peripheral blood lymphocytes is a mechanism for the immediate lymphocytopenia after administration of OKT3. Blood 1996; 87: 404–11

    PubMed  CAS  Google Scholar 

  55. Herzog C, Walker C, Muller W, et al. Anti-CD4 antibody treatment of patients with rheumatoid arthritis: I: effect on clinical course and circulating T cells. J Autoimmun 1989; 2: 627–42

    Article  PubMed  CAS  Google Scholar 

  56. Wendling D, Wijdenes J, Racadot E. Utilisation therapeutique d’un anticorps monoclonal anti-CD4 dans la polyarthrite rheumatoide refractaire: resultats preliminaires. Rev Rheum 1991; 58: 13–7

    CAS  Google Scholar 

  57. Moreland LW, Pratt PW, Mayes MD, et al. Double-blind, placebo-controlled multicenter trial using chimeric monoclonal anti-CD4 antibody, cM-T412 in rheumatoid arthritis patients receiving methotrexate. Arthritis Rheum 1995; 38: 1581–8

    Article  PubMed  CAS  Google Scholar 

  58. Kalayciouglu ME, Fishleder A, Bolwell BJ. Unrelated selective CD8+ T cell depleted allogeneic bone marrow transplantation after busulfan and cyclophosphamide. J Cell Biochem 1994; (Suppl. 18B): 84

  59. Valesini G, Barnaba V, Benvenuto R, et al. A calf thymus acid lysate improves clinical symptoms and T-cell defects in the early stages of HIV infection: second report. Eur J Cancer Clin Oncol 1987; 23: 1915–9

    Article  PubMed  CAS  Google Scholar 

  60. Cazzola P, Mazzanti, Bossi G. In vivo modulating effect of a calf thymus acid lysate on human T lymphocyte subsets and CD4+/CD8+ ratio in the course of different diseases. Curr Ther Res 1987; 42: 1011–7

    Google Scholar 

  61. Harper JI, Mason UA, White TR, et al. A double-blind placebo-controlled study of thymostimulin (TP-1) for the treatment of atopic eczema. Br J Dermatol 1991; 125: 368–72

    Article  PubMed  CAS  Google Scholar 

  62. Braga M, Costantini E, Di Francesco A, et al. Impact of thymopentin on the incidence and severity of postoperative infection: a randomized controlled trial. Br J Surg 1994; 81: 205–8

    Article  PubMed  CAS  Google Scholar 

  63. Gonzalo JA, Gonzalez-Garcia A, Kalland T, et al. Linomide inhibits programmed cell death of peripheral T cells in vivo. Eur J Immunol 1994; 24: 48–52

    Article  PubMed  CAS  Google Scholar 

  64. Bauer R, Boehm I, Niedecken HW, et al. The quantitative immune status during interferon therapy [abstract]. J Invest Dermatol 1989; 93: 540

    Google Scholar 

  65. Aulitzky WE, Aulitzky W, Gastl G, et al. Acute effects of single doses of recombinant interferon gamma on blood cell counts and lymphocyte subsets in patients with advanced renal cell cancer. J Interferon Res 1989; 9: 425–33

    Article  PubMed  CAS  Google Scholar 

  66. Ernstoff MS, Gooding W, Nair S, et al. Immunological effects of treatment of sequential administration of recombinant interferon gamma and alpha in patients with metastatic renal cell carcinoma during a phase I trial. Cancer Res 1992; 52: 851–6

    PubMed  CAS  Google Scholar 

  67. Brockmeyer NH, Kreuzfelder E, Guttman W, et al. Cimetidine and the immuno-response in healthy volunteers. J Invest Dermatol 1989; 93: 757–61

    Article  PubMed  CAS  Google Scholar 

  68. Silverman DA, Chapron DJ. Lymphopenic effect of carbamazepine in a patient with chronic lymphocytic leukaemia. Ann Pharmacother 1995; 29: 865–7

    PubMed  CAS  Google Scholar 

  69. Gugasyan R, Losinno C, Mandel T. The effect of 2-acetyl-4-tetrahydroxybutylimidazole on lymphocyte subsets during a contact hypersensitivity response in the NOD mouse. Immunol Lett 1995; 46: 221–7

    Article  PubMed  CAS  Google Scholar 

  70. Flores LR, Wahl SM, Bayer BM. Mechanisms of morphine-induced immunosuppression: effect of acute morphine administration on lymphocyte trafficking. J Pharmacol Exp Ther 1995; 272: 1246–51

    PubMed  CAS  Google Scholar 

  71. Vasikaran SD, Khan S, McCloskey EV, et al. Sustained response to intravenous alendronate in postmenopausal osteoporosis. Bone 1995; 17: 517–20

    Article  PubMed  CAS  Google Scholar 

  72. Liote F, Boval-Boizard B, Fritz P, et al. Lymphocyte subsets in pamidronate-induced lymphopenia. Br J Rheumatol 1995; 34: 993–5

    Article  PubMed  CAS  Google Scholar 

  73. Cutolo M, Barisone G, Seriolo B, et al. Juxta-articular osteoporosis in rheumatoid arthritis: reversal by local subcutaneous calcitonin. Curr Ther Res 1990; 48: 1126–35

    Google Scholar 

  74. Agnusdei D, Bufalino L. Efficacy of ipriflavone in established osteoporosis and long-term safety. Calcif Tissue Int 1997; 61: S23–7

    Article  PubMed  CAS  Google Scholar 

  75. Gennari C, Adami S, Agnusdei D, et al. Effect of chronic treatment with ipriflavone in postmenopausal women with low bone mass. Calcif Tissue Int 1997; 61: S19–22

    Article  PubMed  CAS  Google Scholar 

  76. Adami S, Bufalino L, Cervetti R, et al. Ipriflavone prevents radial bone loss in postmenopausal women with low bone mass over 2 years. Osteoporosis Int 1997; 7: 119–25

    Article  CAS  Google Scholar 

  77. Kovàcs B. A placebo-controlled dose-finding study of ipriflavone in the presentation of further bone content loss following the menopause [oral presentation]. Congress of the Hungarian Society for Osteoporosis; 1996 Sep 20–26; Tata

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gergely, P. Drug-Induced Lymphopenia. Drug-Safety 21, 91–100 (1999). https://doi.org/10.2165/00002018-199921020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199921020-00003

Keywords

Navigation