Skip to main content
Log in

Can Nasal Drug Delivery Bypass the Blood-Brain Barrier?

Questioning the Direct Transport Theory

  • Current Opinion
  • Published:
Drugs in R & D Aims and scope Submit manuscript

Abstract

The connection between the nasal cavity and the CNS by the olfactory neurones has been investigated extensively during the last decades with regard to its feasibility to serve as a direct drug transport route to the CSF and brain. This drug transport route has gained much interest as it may circumvent the blood-brain barrier (BBB), which prevents some drugs from entering the brain. Approximately 100 published papers mainly reporting animal experiments were reviewed to evaluate whether the experimental design used and the results generated provided adequate pharmacokinetic information to assess whether the investigated drug was transported directly from the olfactory area to the CNS. In the analysis the large anatomical differences between the olfactory areas of animals and humans and the experimental conditions used were evaluated. The aim of this paper was to establish the actual evidence for the feasibility of this direct transport route in humans.

Twelve papers presented a sound experimental design to study direct nose to CNS transport of drugs based on the authors’ criteria. Of these, only two studies in rats were able to provide results that can be seen as an indication for direct transport from the nose to the CNS. No pharmacokinetic evidence could be found to support a claim that nasal administration of drugs in humans will result in an enhanced delivery to their target sites in the brain compared with intravenous administration of the same drug under similar dosage conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Table II
Table III

Similar content being viewed by others

Notes

  1. The total number of claims (n =17)exceeds the number of papers (n =12)as some papers tested more than one compound.

References

  1. Pardridge WM. Drug delivery to the brain. J Cereb Blood Metab 1997; 17 (7): 713–31

    Article  CAS  Google Scholar 

  2. Barnett EM, Perlman S. The olfactory nerve and not the trigeminal nerve is the major site of CNS entry for mouse hepatitis virus, strain JHM. Virology 1993; (1): 185–91

    Article  Google Scholar 

  3. Meredith M. Human vomeronasal organ function: a critical review of best and worst cases. Chemical Senses 2001; 26 (4): 433–45

    Article  PubMed  CAS  Google Scholar 

  4. Morrison EE, Costanzo RM. Morphology of the human olfactory epithelium. J Comp Neurol 1990; 297 (1): 1–13

    Article  PubMed  CAS  Google Scholar 

  5. Anand Kumar TC, David GFX, Umberkoman B, et al. Uptake of radioactivity by body fluids and tissues in rhesus monkeys after intravenous injection or intranasal spray of tritium-labelled oestradiol and progesterone. Curr Sci 1974; 43 (14): 435–9

    Google Scholar 

  6. Anand Kumar TC, David GFX, Puri V. Nasal spray and contraceptives. In: Talwar GP, editor. Recent advances in reproduction and regulation of fertility. Amsterdam: Elsevier/North-Holland Biomedical Press, 1979: 49–56

    Google Scholar 

  7. Anand Kumar TC, David GFX, Sankaranarayanan A, et al. Pharmacokinetics of progesterone after its administration to ovariectomized rhesus monkeys by injection, infusion, or nasal spraying. Proc Natl Acad Sci U S A 1982; 79 (13): 4185–9

    Article  PubMed  CAS  Google Scholar 

  8. David GFX, Puri CP, Anand Kumar TC. Bioavailability of progesterone enhanced by intranasal spraying. Experientia 1981; 37 (5): 533–4

    Article  PubMed  CAS  Google Scholar 

  9. Dluzen DE, Kefalas G. The effects of intranasal infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) upon catecholamine concentrations within olfactory bulbs and corpus striatum of male mice. Brain Res 1996; 741 (1–2): 215–9

    Article  PubMed  CAS  Google Scholar 

  10. Shimizu H, Oh IS, Okada S, et al. Inhibition of appetite by nasal leptin administration in rats. Int J Obes 2005; 29 (7): 858–63

    Article  CAS  Google Scholar 

  11. Gozes I, Bardea A, Reshef A, et al. Neuroprotective strategy for Alzheimer disease: intranasal administration of a fatty neuropeptide. Proc Natl Acad Sci U S A 1996; 93 (1): 427–32

    Article  PubMed  CAS  Google Scholar 

  12. Frey WH, Liu J, Chen X, et al. Delivery of 125I-NGF to the brain via the olfactory route. Drug Deliv 1997; 4 (2): 87–92

    Article  CAS  Google Scholar 

  13. Benedict C, Hallschmid M, Hatke A, et al. Intranasal insulin improves memory in humans. Psychoneuroendocrinology 2004; 29 (10): 1326–34

    Article  PubMed  CAS  Google Scholar 

  14. Born J, Lange T, Kern W, et al. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 2002; 5 (6): 514–6

    Article  PubMed  CAS  Google Scholar 

  15. Capsoni S, Giannotta S, Cattaneo A. Nerve growth factor and galantamine ameliorate early signs of neurodegeneration in anti-nerve growth factor mice. Proc Natl Acad Sci U S A 2002; 99 (19): 12432–7

    Article  PubMed  CAS  Google Scholar 

  16. Chen XQ, Fawcett JR, Rahman YE, et al. Delivery of nerve growth factor to the brain via the olfactory pathway. J Alzheimers Dis 1998; 1 (1): 35–44

    PubMed  CAS  Google Scholar 

  17. Denecke H, Czehak N, Pietrowsky R. Dose-response relationships of intranasal cholecystokinin and the P300 event-related brain potential. Pharmacol Biochem Behav 2002; 73 (3): 593–600

    Article  PubMed  CAS  Google Scholar 

  18. Denecke H, Meyer F, Feldkamp J, et al. Repetitive intranasal administration of cholecystokinin potentiates its central nervous effects. Physiol Behav 2004; 83 (1): 39–45

    PubMed  CAS  Google Scholar 

  19. De Rosa R, Garcia AA, Braschi C, et al. Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci U S A 2005; 102 (10): 3811–6

    Article  PubMed  CAS  Google Scholar 

  20. Frey WH, Liu J, Thorne RG, et al. Intranasal delivery of I-125-labeled nerve growth factor to the brain via the olfactory route. In: Iqbal K, Mortimer JA, Winblad B, et al., editors. Research advances in Alzheimer’s disease and related disorders. Chichester: John Wiley & Son Ltd, 1995: 329–35

    Google Scholar 

  21. Hallschmid M, Benedict C, Schultes B, et al. Intranasal insulin reduces body fat in men but not in women. Diabetes 2004; 53 (11): 3024–9

    Article  PubMed  CAS  Google Scholar 

  22. Jin KL, Xie L, Childs J, et al. Cerebral neurogenesis is induced by intranasal administration of growth factors. Ann Neurol 2003; 53 (3): 405–9

    Article  PubMed  CAS  Google Scholar 

  23. Kern W, Born J, Schreiber H, et al. Central nervous system effects of intranasally administered insulin during euglycemia in men. Diabetes 1999; 48 (3): 557–63

    Article  PubMed  CAS  Google Scholar 

  24. Krude H, Biebermann H, Schnabel D, et al. Obesity due to proopiomelanocortin deficiency: three new cases and treatment trials with thyroid hormone and ACTH4-10. J Clin Endocrinol Metab 2003; 88 (10): 4633–40

    Article  PubMed  CAS  Google Scholar 

  25. Kumbale R, Frey WH, Wilson S, et al. GM1 delivery to the CSF via the olfactory pathway. Drug Deliv 1999; 6 (1): 23–30

    Article  CAS  Google Scholar 

  26. Liu XF, Fawcett JR, Hanson LR, et al. The window of opportunity for treatment of focal cerebral ischemic damage with noninvasive intranasal insulin-like growth factor-I in rats. J Stroke Cerebrovasc Dis 2004; 13 (1): 16–23

    Article  PubMed  Google Scholar 

  27. Perras B, Marshall L, Köhler G, et al. Sleep and endocrine changes after intranasal administration of growth hormonereleasing hormone in young and aged humans. Psychoneuroendocrinology 1999; 24 (7): 743–57

    Article  PubMed  CAS  Google Scholar 

  28. Perras B, Wagner U, Born J, et al. Improvement of sleep and pituitary-adrenal inhibition after subchronic intranasal vasopressin treatment in elderly humans. J Clin Psychopharmacol 2003; 23 (1): 35–44

    Article  PubMed  CAS  Google Scholar 

  29. Smolnik R, Molle M, Fehm HL, et al. Brain potentials and attention after acute and subchronic intranasal administration of ACTH 4-10 and desacetyl-alpha-MSH in humans. Neuroendocrinology 1999; 70 (1): 63–72

    Article  PubMed  CAS  Google Scholar 

  30. Thorne RG, Pronk GJ, Padmanabhan V, et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004; 127 (2): 481–96

    Article  PubMed  CAS  Google Scholar 

  31. Wang Y, Aun R, Tse FL. Brain uptake of dihydroergotamine after intravenous and nasal administration in the rat. Biopharm Drug Dispos 1998; 19 (9): 571–5

    Article  PubMed  CAS  Google Scholar 

  32. Zhao HM, Liu XF, Mao XW, et al. Intranasal delivery of nerve growth factor to protect the central nervous system against acute cerebral infarction. Chin Med Sci J 2004; 19 (4): 257–61

    PubMed  CAS  Google Scholar 

  33. Chow HHS, Anavy N, Villalobos A. Direct nose-brain transport of benzoylecgonine following intranasal administration in rats. J Pharm Sci 2001; 90 (11): 1729–35

    Article  PubMed  CAS  Google Scholar 

  34. Dufes C, Olivier JC, Gaillard F, et al. Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats. Int J Pharm 2003; 255 (1–2): 87–97

    Article  PubMed  CAS  Google Scholar 

  35. Kao HD, Traboulsi A, Itoh S, et al. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm Res 2000; 17 (8): 978–84

    Article  PubMed  CAS  Google Scholar 

  36. Sakane T, Akizuki M, Yamashita S, et al. The transport of a drug to the cerebrospinal fluid directly from the nasal cavity: the relation to the lipophilicity of the drug. Chem Pharm Bull 1991; 39 (9): 2456–8

    Article  PubMed  CAS  Google Scholar 

  37. Sakane T, Akizuki M, Yamashita S, et al. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the dissociation of the drug. J Pharm Pharmacol 1994; 46 (5): 378–9

    Article  PubMed  CAS  Google Scholar 

  38. Sakane T, Akizuki M, Taki Y, et al. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs. J Pharm Pharmacol 1995; 47 (5): 379–81

    Article  PubMed  CAS  Google Scholar 

  39. Sakane T, Yamashita S, Yata N, et al. Transnasal delivery of 5-fluorouracil to the brain in the rat. J Drug Target 1999; 7 (3): 233–40

    Article  PubMed  CAS  Google Scholar 

  40. Seki T, Sato N, Hasegawa T, et al. Nasal absorption of zidovudine and its transport to cerebrospinal fluid in rats. Biol Pharm Bull 1994; 17 (8): 1135–7

    Article  PubMed  CAS  Google Scholar 

  41. Hussain A, Hirai S, Bawarshi R. Nasal absorption of propranolol from different dosage forms by rats and dogs. J Pharm Sci 1980; 69 (12): 1411–3

    Article  PubMed  CAS  Google Scholar 

  42. Hirai S, Yahiki T, Tai M, et al. Absorption of drugs from the nasal mucosa of rat. Int J Pharm 1981; 7 (4): 317–25

    Article  CAS  Google Scholar 

  43. Van den Berg MP, Merkus P, Romeijn SG, et al. Hydroxocobalamin uptake into the cerebrospinal fluid after nasal and intravenous delivery in rats and humans. J Drug Target 2003; 11 (6): 325–31

    Article  PubMed  CAS  Google Scholar 

  44. Van den Berg MP, Merkus P, Romeijn SG, et al. Uptake of melatonin into the cerebrospinal fluid after nasal and intravenous delivery: studies in rats and comparison with a human study. Pharm Res 2004; 21 (5): 799–802

    Article  PubMed  Google Scholar 

  45. Merkus P, Guchelaar HJ, Bosch DA, et al. Direct access of drugs to the human brain after intranasal drug administration? Neurology 2003; 60 (2): 1669–71

    Article  PubMed  CAS  Google Scholar 

  46. Wall A, K/0agedal M, Bergström M, et al. Distribution of zolmitriptan into the CNS in healthy volunteers: a positron emission tomography study. Drugs R D 2005; 6 (3): 139–47

    Article  PubMed  CAS  Google Scholar 

  47. Chandler SG, Illum L, Thomas NW. Nasal absorption in rat. I: A method to demonstrate the histological effects of nasal formulations. Int J Pharm 1991; 70 (1–2): 19–27

    Article  CAS  Google Scholar 

  48. Hunt CA, MacGregor RD, Siegel RA. Engineering targeted in vivo drug delivery. I: The physiological and physiochemical principles governing opportunities and limitations. Pharm Res 1986; 3 (6): 333–44

    Article  CAS  Google Scholar 

  49. Chow HS, Chen Z, Matsuura GT. Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. J Pharm Sci 1999; 88 (8): 754–8

    Article  PubMed  CAS  Google Scholar 

  50. Hussain MA, Rakestraw D, Rowe S, et al. Nasal administration of a cognition enhancer provides improved bioavailability but not enhanced brain delivery. J Pharm Sci 1990; 79 (9): 771–2

    Article  PubMed  CAS  Google Scholar 

  51. Shi J, Perry G, Berridge MS, et al. Labeling of cerebral amyloid beta deposits in vivo using intranasal basic fibroblast growth factor and serum amyloid P component in mice. J Nucl Med 2002; 43 (8): 1044–51

    PubMed  CAS  Google Scholar 

  52. Dahlin M, Bergman U, Jansson B, et al. Transfer of dopamine in the olfactory pathway following nasal administration in mice. Pharm Res 2000; 17 (6): 737–42

    Article  PubMed  CAS  Google Scholar 

  53. Char H, Kumar S, Patel S, et al. Nasal delivery of [14C]dextromethorphan hydrochloride in rats: levels in plasma and brain. J Pharm Sci 1992; 81 (8): 750–2

    Article  PubMed  CAS  Google Scholar 

  54. Vyas TK, Babbar AK, Sharma RK, et al. Intranasal mucoadhesive microemulsions of zolmitriptan: preliminary studies on brain-targeting. J Drug Target 2005; 13 (5): 317–24

    Article  PubMed  CAS  Google Scholar 

  55. Bergström U, Franzén A, Eriksson C, et al. Drug targeting to the brain: transfer of picolinic acid along the olfactory pathways. J Drug Target 2002; 10 (6): 469–78

    Article  PubMed  CAS  Google Scholar 

  56. Eriksson C, Bergman U, Franzén A, et al. Transfer of some carboxylic acids in the olfactory system following intranasal administration. J Drug Target 1999; 7 (2): 131–42

    Article  PubMed  CAS  Google Scholar 

  57. Ross TM, Martinez PM, Renner JC, et al. Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol 2004; 151 (1–2): 66–77

    Article  PubMed  CAS  Google Scholar 

  58. Wang H, Hussain AA, Wedlund PJ. Nipecotic acid: systemic availability and brain delivery after nasal administration of nipecotic acid and n-butyl nipecotate to rats. Pharm Res 2005; 22 (4): 556–62

    Article  PubMed  CAS  Google Scholar 

  59. Westin U, Piras E, Jansson B, et al. Transfer of morphine along the olfactory pathway to the central nervous system after nasal administration to rodents. Eur J Pharm Sci 2005; 24 (5): 565–73

    Article  PubMed  CAS  Google Scholar 

  60. Sigurdsson P, Thorvaldsson T, Gizurarson S. Olfactory absorption of insulin to the brain. Drug Deliv 1997; 4 (3): 195–200

    Article  CAS  Google Scholar 

  61. Khopade AJ, Mahadik KR, Jain NK. Enhanced brain uptake of rifampicin from W/O/W multiple emulsions via nasal route. Indian J Pharm Sci 1996; 58 (2): 83–5

    CAS  Google Scholar 

  62. Jansson B, Hägerström H, Fransén N, et al. The influence of gellan gum on the transfer of fluorescein dextran across rat nasal epithelium in vivo. Eur J Pharm Biopharm 2005; 59 (3): 557–64

    Article  PubMed  CAS  Google Scholar 

  63. Jansson B, Björk E. Visualization of in vivo olfactory uptake and transfer using fluorescein dextran. J Drug Target 2002; 10 (5): 379–86

    Article  PubMed  CAS  Google Scholar 

  64. Larsson P, Tjälve H. Intranasal instillation of aflatoxin B1 in rats: bioactivation in the nasal mucosa and neuronal transport to the olfactory bulb. Toxicol Sci 2000; 55 (2): 383–91

    Article  PubMed  CAS  Google Scholar 

  65. Lindquist NG, Lydén A, Narfström K, et al. Accumulation of taurine in the nasal mucosa and the olfactory bulb. Experientia 1983; 39 (7): 797–9

    Article  PubMed  CAS  Google Scholar 

  66. Persson E, Larsson P, Tjälve H. Cellular activation and neuronal transport of intranasally instilled benzo(a)pyrene in the olfactory system of rats. Toxicol Lett 2002; 133 (2s-3): 211–9

    Article  PubMed  CAS  Google Scholar 

  67. Westin UE, Boström E, Gr/0asjö J, et al. Direct nose-to-brain transfer of morphine after nasal administration to rats. Pharm Res 2006; 23 (3): 565–72

    Article  PubMed  CAS  Google Scholar 

  68. Gizurarson S, Thorvaldsson T, Sigurdsson P, et al. Selective delivery of insulin into the brain: intraolfactory absorption. Int J Pharm 1997; 146 (1): 135–41

    Article  CAS  Google Scholar 

  69. Anand Kumar TC, David GFX, Kumar K, et al. A new approach to fertility regulation by interfering with neuroendocrine pathways. In: Anand Kumar TC, editor. Neuroendocrine regulation of fertility. Basel: Karger, 1976: 314–22

    Google Scholar 

  70. Sakane T, Akizuki M, Yoshida M, et al. Transport of cephalexin to the cerebrospinal fluid directly from the nasal cavity. J Pharm Pharmacol 1991; 43 (6): 449–51

    Article  PubMed  CAS  Google Scholar 

  71. Chou KJ, Donovan MD. Distribution of antihistamines into the CSF following intranasal delivery. Biopharm Drug Dispos 1997; 18 (4): 335–46

    Article  PubMed  CAS  Google Scholar 

  72. Chou KJ, Donovan MD. Lidocaine distribution into the CNS following nasal and arterial delivery: a comparison of local sampling and microdialysis techniques. Int J Pharm 1998; 171 (1): 53–61

    Article  CAS  Google Scholar 

  73. Chou KJ, Donovan MD. The distribution of local anesthetics into the CSF following intranasal administration. Int J Pharm 1998; 168 (2): 137–45

    Article  CAS  Google Scholar 

  74. Henry RJ, Ruano N, Casto D, et al. A pharmacokinetic study of midazolam in dogs: nasal drops vs. atomizer administration. Pediatr Dent 1998; 20 (5): 321–6

    PubMed  CAS  Google Scholar 

  75. Al-Ghananeem AM, Traboulsi AA, Dittert LW, et al. Targeted brain delivery of 17beta-estradiol via nasally administered water soluble prodrugs. AAPS PharmSciTech 2002; 3 (1): 8

    Article  Google Scholar 

  76. Dahlin M, Björk E. Nasal administration of a physostigmine analogue (NXX-066) for Alzheimer’s disease to rats. Int J Pharm 2001; 212 (2): 267–74

    Article  PubMed  CAS  Google Scholar 

  77. Dahlin M, Björk E. Nasal absorption of (S)-UH-301 and its transport into the cerebrospinal fluid of rats. Int J Pharm 2000; 195 (1–2): 197–205

    Article  PubMed  CAS  Google Scholar 

  78. Yajima T, Juni K, Saneyoshi M, et al. Direct transport of 2’,3’-didehydro-3’-deoxythymidine (D4T) and its ester derivatives to the cerebrospinal fluid via the nasal mucous membrane in rats. Biol Pharm Bull 1998; 21 (3): 272–7

    Article  PubMed  CAS  Google Scholar 

  79. Yang Z, Huang Y, Gan G, et al. Microdialysis evaluation of the brain distribution of stavudine following intranasal and intravenous administration to rats. J Pharm Sci 2005; 94 (7): 1577–88

    Article  PubMed  CAS  Google Scholar 

  80. Bagger M, Bechgaard E. A microdialysis model to examine nasal drug delivery and olfactory absorption in rats using lidocaine hydrochloride as a model drug. Int J Pharm 2004; 269 (2): 311–22

    Article  PubMed  CAS  Google Scholar 

  81. Bagger MA, Bechgaard E. The potential of nasal application for delivery to the central brain: a microdialysis study for fluorescein in rats. Eur J Pharm Sci 2004; 21 (2–3): 235–42

    Article  PubMed  CAS  Google Scholar 

  82. Wang F, Jiang X, Lu W. Profiles of methotrexate in blood and CSF following intranasal and intravenous administration to rats. Int J Pharm 2003; 263 (1–2): 1–7

    PubMed  CAS  Google Scholar 

  83. Van den Berg MP, Verhoef JC, Romeijn SG, et al. Uptake of hydrocortisone into the cerebrospinal fluid of rats: comparison of intranasal and intravenous administration in the same animal. STP Pharma Sci 2002; 12 (4): 251–5

    Google Scholar 

  84. Van den Berg MP, Verhoef JC, Romeijn SG, et al. Uptake of estradiol or progesterone into the CSF following intranasal and intravenous delivery in rats. Eur J Pharm Biopharm 2004; 58 (1): 131–5

    Article  PubMed  CAS  Google Scholar 

  85. In ’t Veen JPM, Van den Berg MP, Romeijn SG, et al. Uptake of fluorescein isothiocyanate-labelled dextran into the CSF after intranasal and intravenous administration to rats. Eur J Pharm Biopharm 2005; 61 (1–2): 27–31

    Article  PubMed  CAS  Google Scholar 

  86. Ang VTY, Jenkins JS. Blood-cerebrospinal fluid barrier to arginine-vasopressin, desmopressin and desglycinamide arginine-vasopressin in the dog. J Endocrinol 1982; 93 (3): 319–25

    Article  PubMed  CAS  Google Scholar 

  87. Madrid MY, Langer R. Intranasal drug delivery to the central nervous system. Proceedings of the International Symposium of the Controlled Release of Bioactive Materials. Amsterdam, The Netherlands, 1991: 4

    Google Scholar 

  88. Öhman L, Hahnenberger R, Johansson EDB. 17?-Estradiol levels in blood and cerebrospinal fluid after ocular and nasal administration in women and female rhesus monkeys (Macaca mulatta). Contraception 1980; 22 (4): 349–58

    Article  PubMed  Google Scholar 

  89. Dahlin M, Jansson B, Björk E. Levels of dopamine in blood and brain following nasal administration to rats. Eur J Pharm Sci 2001; 14 (1): 75–

    Article  PubMed  CAS  Google Scholar 

  90. Shi ZQ, Zhang QH, Jiang XG. Pharmacokinetic behavior in plasma, cerebrospinal fluid and cerebral cortex after intranasal administration of hydrochloride meptazinol. Life Sci 2005; 77 (20): 2574–83

    Article  PubMed  CAS  Google Scholar 

  91. Zhang Q, Jiang X, Jiang W, et al. Preparation of nimodipineloaded microemulsion for intranasal delivery and evaluation on the targeting efficiency to the brain. Int J Pharm 2004; 275 (1–2): 85–96

    Article  PubMed  CAS  Google Scholar 

  92. Lerner EN, Van Zanten EH, Stewart GR. Enhanced delivery of octreotide to the brain via transnasal iontophoretic administration. J Drug Target 2004; 12 (5): 273–80

    Article  PubMed  CAS  Google Scholar 

  93. Banks WA, During MJ, Niehoff ML. Brain uptake of the glucagon-like peptide-1 antagonist exendin(9-39) after intranasal administration. J Pharmacol Exp Ther 2004; 309 (2): 469–75

    Article  PubMed  CAS  Google Scholar 

  94. Burstein AH, Modica R, Hatton M, et al. Pharmacokinetics and pharmacodynamics of midazolam after intranasal administration. J Clin Pharmacol 1997; 37 (8): 711–8

    PubMed  CAS  Google Scholar 

  95. Gais S, Sommer M, Fischer S, et al. Post-trial administration of vasopressin in humans does not enhance memory formation (vasopressin and memory consolidation). Peptides 2002; 23 (3): 581–3

    Article  PubMed  CAS  Google Scholar 

  96. Gozes I, Giladi E, Pinhasov A, et al. Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improves performance in a water maze. J Pharmacol Exp Ther 2000; 293 (3): 1091–8

    PubMed  CAS  Google Scholar 

  97. Hruz P, Zechner S, Heimberg D, et al. Intranasal administration of delta sleep-inducing peptide increases P300. J Clin Psychopharmacol 2001; 21 (6): 626–8

    Article  PubMed  CAS  Google Scholar 

  98. Lindhardt K, Gizurarson S, Stefánsson SB, et al. Electroencephalographic effects and serum concentrations after intranasal and intravenous administration of diazepam to healthy volunteers. Br J Clin Pharmacol 2001; 52 (5): 521–752

    Article  PubMed  CAS  Google Scholar 

  99. Reger MA, Watson GS, Frey II WH, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging 2006; 27 (3): 451–8

    Article  PubMed  CAS  Google Scholar 

  100. Volkow ND, Wang GJ, Fischman MW, et al. Effects of route of administration on cocaine induced dopamine transporter blockade in the human brain. Life Sci 2000; 67 (12): 1507–15

    Article  PubMed  CAS  Google Scholar 

  101. Derad I, Willeke K, Pietrowsky R, et al. Intranasal angiotensin II directly influences central nervous regulation of blood pressure. Am J Hypertens 1998; 11 (8): 971–7

    Article  PubMed  CAS  Google Scholar 

  102. Pietrowsky R, Struben C, Molle M, et al. Brain potential changes after intranasal vs intravenous administration of vasopressin: evidence for a direct nose brain pathway for peptide effects in humans. Biol Psychiatry 1996; 39 (5): 332–40

    Article  PubMed  CAS  Google Scholar 

  103. Pietrowsky R, Thiemann A, Kern W, et al. A nose-brain pathway for psychotropic peptides: evidence from a brain evoked potential study with cholecystokinin. Psychoneuroendocrinology 1996; 21 (6): 559–72

    Article  PubMed  CAS  Google Scholar 

  104. Fehm HL, Smolnik R, Kern W, et al. The melanocortin melanocyte-stimulating hormone/adrenocorticotropin4-10 decreases body fat in humans. J Clin Endocrinol Metab 2001; 86 (3): 1144–8

    Article  PubMed  CAS  Google Scholar 

  105. De Souza Silva MA, Mattern C, Hacker R, et al. Intranasal administration of the dopaminergic agonists L-DOPA, amphetamine, and cocaine increases dopamine activity in the neostriatum: a microdialysis study in the rat. J Neurochem 1997; 68 (1): 233–9

    Article  PubMed  Google Scholar 

  106. Schulz C, Paulus K, Lehnert H. Central nervous and metabolic effects of intranasally applied leptin. Endocrinology 2004; 145 (6): 2696–701

    Article  PubMed  CAS  Google Scholar 

  107. Pelidou SH, Zou LP, Deretzi G, et al. Intranasal administration of recombinant mouse interleukin-12 increases inflammation and demyelination in chronic experimental autoimmune neuritis in Lewis rats. Scand J Immunol 2000; 51 (1): 29–35

    Article  PubMed  CAS  Google Scholar 

  108. Yura M, Takahashi I, Terawaki S, et al. Nasal administration of cholera toxin (CT) suppresses clinical signs of experimental autoimmune encephalomyelitis (EAE). Vaccine 2001; 20 (1–2): 134–9

    Article  PubMed  CAS  Google Scholar 

  109. Pietrowsky R, Claassen L, Frercks H, et al. Time course of intranasally administered cholecystokinin-8 on central nervous effects. Neuropsychobiology 2001; 43 (4): 254–9

    Article  PubMed  CAS  Google Scholar 

  110. Weiner HL, Lemere CA, Maron R, et al. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann Neurol 2000; 48 (4): 567–79

    Article  PubMed  CAS  Google Scholar 

  111. Yu YP, Xu QQ, Zhang Q, et al. Intranasal recombinant human erythropoietin protects rats against focal cerebral ischemia. Neurosci Lett 2005; 387 (1): 5–10

    Article  PubMed  CAS  Google Scholar 

  112. Liu XF, Fawcett JR, Thorne RG, et al. Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci 2001; 187 (1–2): 91–7

    Article  PubMed  CAS  Google Scholar 

  113. Liu XF, Fawcett JR, Thorne RG, et al. Non-invasive intranasal insulin-like growth factor-I reduces infarct volume and improves neurologic function in rats following middle cerebral artery occlusion. Neurosci Lett 2001; 308 (2): 91–4

    Article  PubMed  CAS  Google Scholar 

  114. Zhang QZ, Jiang XG, Wu CH. Distribution of nimodipine in brain following intranasal administration in rats. Acta Pharmacol Sin 2004; 25 (4): 522–7

    PubMed  CAS  Google Scholar 

  115. Van den Berg MP, Romeijn SG, Verhoef JC, et al. Serial cerebrospinal fluid sampling in a rat model to study drug uptake from the nasal cavity. J Neurosci Methods 2002; 116 (1): 99–107

    Article  PubMed  Google Scholar 

  116. Chou RC, Levy G. Effect of heparin or salicylate infusion on serum protein binding and on concentrations of phenytoin in serum, brain and cerebrospinal fluid of rats. J Pharmacol Exp Ther 1981; 219 (1): 42–8

    PubMed  CAS  Google Scholar 

  117. Waynforth, HB, ai]Flecknell, PA. Cisternal puncture (and intracisternal injection). In: Waynforth HB, Flecknell PA, editors. Experimental and surgical techniques in the rat. London: Academic Press, 1980: 59–61

    Google Scholar 

Download references

Acknowledgements

The authors used no sources of funding in the writing of this article. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans W. H. M. Merkus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkus, F.W.H.M., van den Berg, M.P. Can Nasal Drug Delivery Bypass the Blood-Brain Barrier?. Drugs R D 8, 133–144 (2007). https://doi.org/10.2165/00126839-200708030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00126839-200708030-00001

Keywords

Navigation