Skip to main content
Log in

Management of Focal-Onset Seizures

An Update on Drug Treatment

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Focal-onset seizures are manifestations of abnormal epileptic firing of brain cells in a localised area or areas of the brain. The diagnosis of focal-onset seizures initially entails an EEG, a detailed history from the patient and eyewitnesses, as well as computer tomographic or, preferably, magnetic resonance imaging scans. Video EEG to record ictal events may be necessary to establish the correct diagnosis.

Focal seizures are classified according to the International Classification of Epileptic Seizures and International Classification of Epilepsies and Epilepsy Syndromes. It is important to try to decide how the seizure event fits into this system in order to successfully evaluate and optimise treatment, as well as to give detailed information to the patient about their seizures and prognosis.

Once the decision to treat the seizures has been made, the physician must choose which medication is the most appropriate to begin with. Carbamazepine, phenytoin or valproic acid (sodium valproate) are often rated as first-line drugs, but factors such as adverse-effect profiles, age, possibility of pregnancy, and concomitant diseases and medication also need to be considered. Most of the newer antiepileptic drugs (AEDs) appear to have good efficacy and better tolerability than the older agents, but evidence to support their superiority is scarce and has led to conflicting advice in several guidelines. Among the newer AEDs, lamotrigine, gabapentin, topiramate and oxcarbazepine have obtained monotherapy indication in many countries. The higher costs of the newer AEDs may inhibit their wider use, especially in poorer countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II

Similar content being viewed by others

References

  1. Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 1981; 22: 489–501

    Article  Google Scholar 

  2. Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989; 30: 389–99

    Article  Google Scholar 

  3. Fisher RS, van Emde Boas W, Blume W, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005; 46: 470–2

    Article  PubMed  Google Scholar 

  4. Loddenkemper T, Kellinghaus C, Wyllie E, et al. A proposal for a five-dimensional patient-oriented epilepsy classification. Epileptic Disord 2005; 7: 308–20

    PubMed  Google Scholar 

  5. Battaglia A, Guerrini R. Chromosomal disorders associated with epilepsy. Epileptic Disord 2005; 7: 181–92

    PubMed  Google Scholar 

  6. Ottman R. Analysis of genetically complex epilepsies. Epilepsia 2005; 46 Suppl. 19: 7–14

    Article  PubMed  Google Scholar 

  7. Sander T. The genetics of idiopathic generalized epilepsy: implications for the understanding of its aetiology. Mol Med Today 1996; 2: 173–80

    Article  PubMed  CAS  Google Scholar 

  8. Hauser WA, Annegers JF, Kurland LT. Prevalence of epilepsy in Rochester, Minnesota: 1940-1980. Epilepsia 1991; 32: 429–45

    Article  PubMed  CAS  Google Scholar 

  9. Hauser WA, Annegers JF, Kurland LT. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia 1993; 34: 453–68

    Article  PubMed  CAS  Google Scholar 

  10. Salanova V, Markand O, Worth R. Temporal lobe epilepsy: analysis of patients with dual pathology. Acta Neurol Scand 2004; 109: 126–31

    Article  PubMed  CAS  Google Scholar 

  11. Bast T, Ramantani G, scitz A, et al. Focal cortical dysplasia: prevalence, clinical presentation and epilepsy in children and adults. Acta Neurol Scand 2006; 113: 72–81

    Article  PubMed  CAS  Google Scholar 

  12. Eriksson SH, Nordborg C, Rydenhag B, et al. Parenchymal lesions in pharmacoresistant temporal lobe epilepsy: dual and multiple pathology. Acta Neurol Scand 2005; 112: 151–6

    Article  PubMed  CAS  Google Scholar 

  13. Rowan AJ, Gates JR. Non-epileptic seizures. Stoneham: Butterworth-Heinemann, 1993

    Google Scholar 

  14. Kotsopoulos I, de Krom M, Kessels F, et al. Incidence of epilepsy and predictive factors of epileptic and non-epileptic seizures. Seizure 2005; 14: 175–82

    Article  PubMed  Google Scholar 

  15. Niedermeyer ED. Electroencephalography and the diagnosis of epilepsy. In: Fisher RS, editor. Imitators of epilepsy. New York: Demos Publications, 1994: 227–80

    Google Scholar 

  16. Baumgartner C, Pataraia E. Revisiting the role of magnetoen-cephalography in epilepsy. Curr Opin Neurol 2006; 19: 181–6

    Article  PubMed  Google Scholar 

  17. Gotman J, Kobayashi E, Bagshaw AP, et al. Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging. Epub 2006 Apr 28

  18. Knowlton RC. The role of FDG-PET, ictal SPECT, and MEG in the epilepsy surgery evaluation. Epilepsy Behav 2006; 8: 91–101. Epub 2006 Jan 10

    Article  PubMed  Google Scholar 

  19. Johannessen SI. Plasma drug concentration monitoring of anticonvulsants. CNS Drugs 1997; 7: 349–65

    Article  CAS  Google Scholar 

  20. Johannessen SI, Battino D, Berry DJ, et al. Therapeutic drug monitoring of the newer antiepileptic drugs. Ther Drug Monit 2003; 25: 347–63

    Article  PubMed  CAS  Google Scholar 

  21. Johannessen SI. Can pharmacokinetic variability be controlled for patient’s benefit? The place of TDM for new AEDs. Ther Drug Monit 2005; 27: 10–3

    Article  Google Scholar 

  22. Liporace JD, Sperling MR, Dichter MA. Absence seizures and carbamazepine in adults. Epilepsia 1994; 35: 1026–102

    Article  PubMed  CAS  Google Scholar 

  23. McLean MJ, Macdonald RL. Carbamazepine and 10,11-epoxy-carbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986; 238: 727–38

    PubMed  CAS  Google Scholar 

  24. Holmes GL. Carbamazepine: adverse effects. In: Levy RH, Mattson RH, Meldrum BS, et al., editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2002: 285–97

    Google Scholar 

  25. Isojarvi JI, Tauboll E, Herzog AG. Effect of antiepileptic drugs on reproductive endocrine function in individuals with epilepsy. CNS Drugs 2005; 19: 207–23

    Article  PubMed  Google Scholar 

  26. Johannessen SI. Pharmacokinetics of antiepileptic drugs and their clinical significance. Behav Neurol 1990; 3 Suppl. 1: 1–11

    Google Scholar 

  27. Battino D, Estienne M, Avanzini G. Clinical pharmacokinetics of antiepileptic drugs in paediatric patients. Pt II. Phenytoin, carbamazepine, sulthiame, lamotrigine, vigabatrin, oxcarbazepine and felbamate. Clin Pharmacokinet 1995; 29: 241–369

    Google Scholar 

  28. Brodie MJ, Dichter MA. Antiepileptic drugs. N Engl J Med 1996; 334: 168–75

    Article  PubMed  CAS  Google Scholar 

  29. Choonara IA, Rane A. Therapeutic drug monitoring of anticonvulsants: state of the art. Clin Pharmacokinet 1990; 18: 318–28

    Article  PubMed  CAS  Google Scholar 

  30. Mattson RH. Antiepileptic drug monitoring: a reappraisal. Epilepsia 1995; 36 Suppl. 5: S22–9

    Article  PubMed  Google Scholar 

  31. Johannessen SI, Tomson T. General principles: laboratory monitoring of antiepileptic drugs. In: Levy RH, Mattson RH, Meldrum BS, et al., editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2002: 103–11

    Google Scholar 

  32. Mattson RH, Cramer JA, Collins JF, et al. Comparison of carbamazepine, phenobarbital, phenytoin and primidone in partial and secondary generalized tonic-clonic seizures. N Engl J Med 1985; 313: 145–51

    Article  PubMed  CAS  Google Scholar 

  33. Seltzer ME. The action of phenytoin on a composite electrical-chemical synapse in the lamprey spinal cord. Ann Neurol 1978; 3: 202–6

    Article  Google Scholar 

  34. Bruni J, Wilder BJ. The toxicology of antiepileptic drugs. In: Viken PJ, Bruyn G, editors. Handbook of clinical neurology. Vol 37. Intoxications of the nervous system. Pt 20. New York: North-Holland Publishing Co., 1979: 199–222

    Google Scholar 

  35. Buchthal F, Svensmark O. Aspects of the pharmacology of phenytoin (Dilantin) and phenobarbital relevant to their dosage in the treatment of epilepsy. Epilepsia 1960; 1: 373–84

    Article  PubMed  CAS  Google Scholar 

  36. Mattson RH, Cramer JA, Collins JF, et al. A comparison of valproate with carbamazepine for complex partial seizures and secondarily generalized tonic-clonic seizures in adults. N Engl J Med 1992; 327: 765–71

    Article  PubMed  CAS  Google Scholar 

  37. Johannessen CU, Petersen D, Fonnum F, et al. The acute effect of valproate on cerebral energy metabolism in mice. Epilepsy Res 2001; 47: 247–56

    Article  PubMed  CAS  Google Scholar 

  38. Löscher W. Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 2002; 16: 669–94

    Article  PubMed  Google Scholar 

  39. McLean MK, Macdonald RL. Sodium valproate, but not ethosuximide, produces use-and voltage-dependent limitation of high-frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986; 237: 1001–11

    PubMed  CAS  Google Scholar 

  40. Wilder BJ, Ramsay RE, Murphy JV, et al. Comparison of valproic acid and phenytoin in newly diagnosed tonic-clonic seizures. Neurology 1983; 33: 1474–6

    Article  PubMed  CAS  Google Scholar 

  41. Jeavons PM. Non-dose-related side effects of valproate. Epilepsia 1984; 25 Suppl. 1: 18–23S

    Article  Google Scholar 

  42. Dreifuss FE, Langer DH, Moline KA, et al. Valproic acid hepatic fatalities II: US experience since 1984. Neurology 1988; 33: 201–7

    Google Scholar 

  43. Battino D, Estienne M, Avanzini G. Clinical pharmacokinetics of antiepileptic drugs in paediatric patients: Pt 1. Phenobarbital, primidone, valproic acid, ethosuximide, and mesuximide. Clin Pharmacokinet 1995; 29: 257–86

    CAS  Google Scholar 

  44. Gram L, Flachs H, Wurtz-Jorgensen A, et al. Sodium valproate, serum level and clinical effect in epilepsy: a controlled study. Epilepsia 1979; 20: 303–11

    Article  PubMed  CAS  Google Scholar 

  45. Henriksen O, Johannessen SI. Clinical and pharmacokinetic observations on sodium valproate: a 5-year follow-up study in 100 children with epilepsy. Acta Neurol Scand 1982; 65: 504–23

    Article  PubMed  CAS  Google Scholar 

  46. Sundqvist A, Tomson T, Lundkvist B. Pharmacokinetics of valproic acid in patients with juvenile myoclonic epilepsy on monotherapy. Ther Drug Monit 1997; 19: 153–9

    Article  PubMed  CAS  Google Scholar 

  47. Twyman RE, Rogers CJ, Macdonald RL. Differential regulation of gamma aminobutyric acid receptor channels by diazepam and phenobarbital. Ann Neurol 1989; 25: 213–20

    Article  PubMed  CAS  Google Scholar 

  48. Gallagher BB, Baumel IP, Mattson RH, et al. Primidone, diphenylhydantoin and phenobarbital: aspects of acute and chronic toxicity. Neurology 1973; 23: 145–9

    Article  PubMed  CAS  Google Scholar 

  49. Schottelius DD, Fincham RW. Clinical application of serum primidone levels. In: Pippenger CE, Penry JK, Kutt H, editors. Antiepileptic drugs: quantitative analysis and interpretation. New York: Raven Press, 1978: 273–82

    Google Scholar 

  50. Smith DB, Mattson RH, Cramer JA, et al. Results of a nationwide Veterans Administration cooperative study comparing the efficacy and toxicity of carbamazepine, phenobarbital, phenytoin, and promidone. Epilepsia 1987; 28 Suppl. 3: S50–8

    Article  PubMed  Google Scholar 

  51. Robertson MM. Current states of the 1,4 and 1,5 benzodiazepines in the treatment of epilepsy: the place of clobazam. Epilepsia 1986; 27 Suppl. 1: 27–41S

    Article  Google Scholar 

  52. Trimble MR. Clobazam. In: Resor SRJ, Kutt H, editors. The medical treatment of epilepsy. New York: Marcel Dekker Inc, 1992: 319–28

    Google Scholar 

  53. Koeppen DA. A review of clobazam studies in epilepsy. In: Hindmarch I, Stonier PD, Trimble MR, editors. Clobazam: Royal Society of Medicine International Congress Symposium Series No. 74. Lond R Soc Med 1985, 149–53

  54. Wolf P. Clobazam in drug-resistant patients with complex focal seizures: report of an open study. In: Hindmarch I, Stonier PD, Trimble MR, editors. International Congress and Symposium Series No. 74. Lond R Soc Med 1985, 167-71

  55. Streete JM, Berry DJ, Newbery JE. The analysis of clobazam and its metabolite desmethylclobazam by high-performance liquid chromatography. Ther Drug Monit 1991; 13: 339–44

    Article  PubMed  CAS  Google Scholar 

  56. Wang J, Hug D, Gautschi K, et al. Clobazam for treatment of epilepsy. J Epilepsy 1993; 6: 180–4

    Article  Google Scholar 

  57. Dam M, Ekberg R, Loyning Y, et al. A double-blind study comparing oxcarbazepine and carbamazepine in patients with newly diagnosed, previously untreated epilepsy. Epilepsy Res 1989; 3: 70–6

    Article  PubMed  CAS  Google Scholar 

  58. Schmutz M, Brugger F, Gentsch C, et al. Oxcarbazepine: preclinical anticonvulsant profile and putative mechanisms of action. Epilesia 1994; 35 Suppl. 5: 47–50S

    Article  Google Scholar 

  59. Friis ML, Kristensen O, Boas J, et al. Therapeutic experience with 947 epileptic out-patients in oxcarbazepine treatment. Acta Neurol Scand 1993; 87: 224–7

    Article  PubMed  CAS  Google Scholar 

  60. Lloyd P, Flesch G, Dieterie W. Clinical pharmacology and pharmacokinetics of oxcarbazepine. Epilepsia 1994; 35 Suppl. 3: 10–13S

    Article  Google Scholar 

  61. Baruzzi A, Albani F, Riva R. Oxcarbazepine: pharmacokinetic interactions and their clinical relevance. Epilepsia 1994; 35 Suppl. 3: 9–14S

    Article  Google Scholar 

  62. Armijo JA, Vega-Gil N, Shushtarian M, et al. 10-Hydroxycarbazepine serum concentration-to-oxcarbazepine dose ratio: influence of age and concomitant antiepileptic drugs. Ther Drug Monit 2005; 27: 199–204

    Article  PubMed  CAS  Google Scholar 

  63. Van Parys JAP, Meinardi H. Survey of 260 patients treated with oxcarbazepine (Trileptal) on a named-patient basis. Epilepsy Res 1994; 19: 79–85

    Article  PubMed  Google Scholar 

  64. Borusiak P, Korn-Merker E, Holert N, et al. Oxcarbazepine in treatment of childhood epilepsy: a survey of 46 children and adolescents. J Epilepsy 1998; 11: 355–60

    Article  Google Scholar 

  65. Friis ML, Kristensen O, Boas J, et al. Therapeutic experiences with 947 epileptic out-patients in oxcarbazepine treatment. Acta Neurol Scand 1993; 87: 224–7

    Article  PubMed  CAS  Google Scholar 

  66. scino M, Fujitani B. Zonisamide: clinical efficacy and use in epilepsy. In: Levy RH, Mattson RH, Meldrum BS, Perucca E. editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2002: 885–91

    Google Scholar 

  67. Lee BI. Zonisamide: adverse effects. In: Levy RH, Mattson RH, Meldrum BS, Perucca E. editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2002: 892–898

    Google Scholar 

  68. Leppik IE. Antiepileptic drugs in development: prospects for the near future. Epilepsia 1994; 35 Suppl. 4: 29–40S

    Article  Google Scholar 

  69. Chadwick DW, Marson AG. Zonisamide add-on for drug-resistant partial epilepsy. Cochrane Database Syst Rev 2005; (4): CD001416

  70. Frampton JE, Scott LJ. Zonisamide: a review of its use in the management of partial seizures in epilepsy [published erratum appears in CNS Drugs 2005; 19: 633]. CNS Drugs 2005; 19: 347–67

    Article  PubMed  CAS  Google Scholar 

  71. Brodie M. Zonisamide as adjunctive therapy for refractory partial seizures. Epilepsy Res 2006; 68 Suppl. 2: S11–16

    Article  PubMed  CAS  Google Scholar 

  72. Ohtahara S. Zonisamide in the management of epilepsy: Japanese experience. Epilepsy Res 2006; 68 Suppl. 2: S25–33

    Article  PubMed  CAS  Google Scholar 

  73. Leppik IE. Practical prescribing and long-term efficacy and safety of zonisamide. Epilepsy Res 2006; 68 Suppl. 2: S17–24

    Article  PubMed  CAS  Google Scholar 

  74. Ito T, Yamaguchi T, Miyazaki H, et al. Pharmacokinetic studies of AD-810, a new antiepileptic compound: phase I trials. Arzneimittel Forschung 1982; 32: 1581–6

    PubMed  CAS  Google Scholar 

  75. Sackellares JC, Donofrio PD, Wagner JG, et al. Pilot study of ZNS (l,2-benzisoxazole-3 methanesulfonamide) in patients with refractory partial seizures. Epilepsia 1985; 26: 206–11

    Article  PubMed  CAS  Google Scholar 

  76. Mimaki T. Clinical pharmacology and therapeutic drug monitoring of zonisamide. Ther Drug Monit 1998; 20: 593–7

    Article  PubMed  CAS  Google Scholar 

  77. Glauser TA, Pippenger CE. Controversies in blood-level monitoring: re-examination its role in the treatment of epilepsy. Epilepsia 2000; 41 Suppl. 8: S6–15

    Article  PubMed  CAS  Google Scholar 

  78. Mumford JP, Lewis PJ. Vigabatrin. In: Pisani F, Perucca E, Avanzini G, et al., editors. New antiepileptic drugs. Epilepsy Res 1991; Suppl. 3: 161–8

    CAS  Google Scholar 

  79. Tartara A, Manni R, Galimberti CA, et al. Vigabatrin in the treatment of epilepsy: a double-blind placebo-controlled study. Epilepsia 1986; 27: 717–23

    Article  PubMed  CAS  Google Scholar 

  80. Ramsay RE, Slater JD. Antiepileptic drugs in clinical development. In: French JA, Dichter MA, Leppik IE, editors. New antiepileptic drug development, preclinical and clinical aspects. Epilepsy Res 1993; Suppl. 10: 45–67

    CAS  Google Scholar 

  81. Malmgren K, Ben-Menachem E, Frisen L. Vigabatrin visual toxicity: evolution and dose dependence. Epilepsia 2001; 4: 609–15

    Article  Google Scholar 

  82. Kalviainen R, Nousiainen I. Visual field defects with vigabatrin: epidemiology and therapeutic implications. CNS Drugs 2001; 15: 217–30

    Article  PubMed  CAS  Google Scholar 

  83. Schechter PJ. Clinical pharmacology of vigabatrin. Br J Clin Pharmacol 1989; 27: 19–22S

    Article  Google Scholar 

  84. Rimmer EM, Richens A. Interaction between vigabatrin and phenytoin. Br J Clin Pharmacol 1989; 27: 27–33S

    Article  Google Scholar 

  85. Patsalos PN. New antiepileptic drugs. Ann Clin Biochem 1999; 36: 10–9

    PubMed  CAS  Google Scholar 

  86. McKee PJW, Brodie MJ. Lamotrigine. In: Shorvon S, Dreifuss F, Fish D, et al., editors. The treatment of epilepsy. Oxford: Blackwell Science, 1996: 438–45

    Google Scholar 

  87. Yuen AWC. Lamotrigine. In: Pisani F, Perucca E, Avanzini G, et al., editors. New antiepileptic drugs. Epilepsy Res 1991; Suppl. 3: 115–23

    CAS  Google Scholar 

  88. Brodie MJ. Lamotrigine. Lancet 1992; 339: 1397–400

    Article  PubMed  CAS  Google Scholar 

  89. Goa KL, Ross SR, Chrisp P. Lamotrigine: a review of its pharmacological properties and clinical efficacy in epilepsy. Drugs 1993; 46: 152–76

    Article  PubMed  CAS  Google Scholar 

  90. Sabers A, Ohman I, Christensen J, et al. Oral contraceptives reduce lamotrigine plasma levels. Neurology 2003; 61: 570–1

    Article  PubMed  CAS  Google Scholar 

  91. Reimers A, Helde G, Brodtkorb E. Ethinyl estradiol, not progestogens, reduces lamotrigine serum concentrations. Epilepsia 2005; 46: 1414–7

    Article  PubMed  CAS  Google Scholar 

  92. Kaufman KR, Gerner R. Lamotrigine toxicity secondary to sertraline. Seizure 1998; 7: 163–5

    PubMed  CAS  Google Scholar 

  93. Depot M, Powell JR, Messenheimer Jr JA, et al. Kinetic effects of multiple oral doses of acetaminophen on a single oral dose of lamotrigine. Clin Pharmacol Ther 1990; 48: 346–55

    Article  PubMed  CAS  Google Scholar 

  94. Ebert U, Thong NQ, Oertel R, et al. Effects of rifampicin and cimetidine on pharmacokinetics and pharmacodynamics of lamotrigine in healthy subjects. Eur J Clin Pharmacol 2000; 56: 299–304

    Article  PubMed  CAS  Google Scholar 

  95. Morris RG, Lee MY, Cleanthous X, et al. Long-term follow-up using a higher target range for lamotrigine monitoring. Ther Drug Monit 2004; 26: 626–32

    Article  PubMed  CAS  Google Scholar 

  96. Leppik IE, Dreifuss FE, Pledger GW, et al. Felbamate for partial seizures: results of a controlled clinical trial. Neurology 1991; 41: 1785–9

    Article  PubMed  CAS  Google Scholar 

  97. Rho JM, Donevan SD, Rogawski MA. Felbamate inhibits NMDA responses and potentiates GABA responses in cultured rat hippocampal neurons [abstract]. Epilepsia 1993; 34 Suppl. 6: 119S

    Google Scholar 

  98. Pellock JM. Felbamate. Epilepsia 1999; 40 Suppl. 5: S57–62

    Article  PubMed  CAS  Google Scholar 

  99. Rogawski MA. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res. Epub 2006 Apr 16

  100. Leppik IE, Wolff DL. The place of felbamate in the treatment of epilepsy. CNS Drugs 1995; 4: 294–301

    Article  CAS  Google Scholar 

  101. Dichter MA, Brodie MJ. New antiepileptic drugs. N Engl J Med 1996; 334: 1583–9

    Article  PubMed  CAS  Google Scholar 

  102. Harden CL, Trifiletti R, Kutt H. Felbamate levels in patients with epilepsy. Epilepsia 1996; 37: 280–3

    Article  PubMed  CAS  Google Scholar 

  103. Anhut H, Ashman P, Feuerstein TJ, et al. Gabapentin (Neurontin) as add-on therapy in patients with partial seizures; a double-blind, placebo-controlled study. Epilepsia 1994; 35: 795–801

    Article  PubMed  CAS  Google Scholar 

  104. Petroff OAC, Rothman DL, Behar KL, et al. The effect of gabapentin on brain gamma-aminobutyric acid in patients with epilepsy. Ann Neurol 1996; 39: 95–9

    Article  PubMed  CAS  Google Scholar 

  105. Goa KL, Sorkin EM. Gabapentin: a review of its pharmacological properties and clinical potential in epilepsy. Drugs 1993; 46: 409–27

    Article  PubMed  CAS  Google Scholar 

  106. Armijo JA, Pena MA, Adin J, et al. Association between patient age and gabapentin serum concentrations-to-dose ratio: a preliminary multivariate analysis. Ther Drug Monit 2004; 26: 633–7

    Article  PubMed  CAS  Google Scholar 

  107. Gatti G, Ferrari AR, Guerrini R, et al. Plasma gabapentin concentrations in children witn epilepsy: influence of age, relationship with dosage, and preliminary observations on correlation with clinical response. Ther Drug Monit 2003; 25: 54–60

    Article  PubMed  CAS  Google Scholar 

  108. Lindberger M, Luhr O, Johannessen SI, et al. Serum concentration and effects of gabapentin and vigabatrin: observations from a dose titration study. Ther Drug Monit 2003; 4: 457–62

    Article  Google Scholar 

  109. Faught E, Wilder BJ, Ramsay RE, et al. Topiramate placebo-controlled dose-ranging trial in refractory partial epilepsy using 200-, 400-, and 600mg daily dosages. Neurology 1996; 46: 1684–90

    Article  PubMed  CAS  Google Scholar 

  110. Langtry HD, Gillis JC, Davis R. Topiramate: a review of its pharmacodynamic and pharmacokinetic properties and clinical efficacy in the management of epilepsy. Drugs 1997; 54: 752–73

    Article  PubMed  CAS  Google Scholar 

  111. Adin J, Gomez MC, Blanco Y, et al. Topiramate serum concentration-to-dose ratio: influence of age and concomitant antiepileptic drugs and monitoring implications. Ther Drug Monit 2004; 26: 251–7

    Article  PubMed  CAS  Google Scholar 

  112. Bialer M, Doose DR, Murthy B, et al. Pharmacokinetic interactions of topiramate. Clin Pharmacokinet 2004; 43: 763–80

    Article  PubMed  CAS  Google Scholar 

  113. Ferrari AR, Guerrini R, Gatti G, et al. Influence of dosage, age, and co-medication on plasma topiramate concentrations in children and adults with severe epilepsy and preliminary observations on correlations with clinical response. Ther Drug Monit 2003; 25: 700–8

    Article  PubMed  CAS  Google Scholar 

  114. Dahlin MG, Öhman IK. Age and antiepileptic drugs influence topiramate plasma levels in children. Pediatr Neurol 2004; 4: 248–53

    Article  Google Scholar 

  115. Battino D, Croci D, Rossini A, et al. Topiramate pharmacokinetics in children and adults with epilepsy: a case-matched comparison based on therapeutic drug monitoring data. Clin Pharmacokinet 2005; 44: 407–16

    Article  PubMed  CAS  Google Scholar 

  116. Stephen LJ, Sills GJ, Brodie MJ. Topiramate in refractory epilepsy: a prospective observational study. Epilepsia 2000; 41: 977–80

    Article  PubMed  CAS  Google Scholar 

  117. Christensen J, Poulsen JH, Andreasen F, et al. Topiramate addon treatment in refractory epilepsy patients: a randomised concentration controlled clinical trial [abstract]. Epilepsia 2001; 42 Suppl. 7: 178

    Google Scholar 

  118. Ben-Menachem E. International experience with tiagabine addon therapy. Epilepsia 1995; 36 Suppl. 6: 14–21S

    Article  Google Scholar 

  119. Mengel H. Tiagabine. Epilepsia 1994; 35 Suppl. 5: 81–4S

    Article  Google Scholar 

  120. Leppik IE. Tiagabine: the safety landscape. Epilesia 1995; 36 Suppl. 6: 10–13S

    Article  Google Scholar 

  121. Brodie MJ. Tiagabine in the management of epilepsy. Epilepsia 1997; 38 Suppl. 2: 23–7S

    Article  Google Scholar 

  122. Schmidt D, Gram L, Brodie M, et al. Tiagabine in the treatment of epilepsy: a clinical review with a guide for the prescribing physician. Epilepsy Res 2000; 41: 245–51

    Article  PubMed  CAS  Google Scholar 

  123. Rowan AJ, Gustavson I, Shu V, et al. Dose concentration relationship in a multicenter tiagabine (Gabitril) trial [abstract]. Epilepsia 1997; 38 Suppl. 3: 40

    Google Scholar 

  124. Privitera M. Efficacy of levetiracetam: a review of three pivotal clinical trials. Epilepsia 2001; 42 Suppl. 4: 31–5

    Article  PubMed  Google Scholar 

  125. Klitgaard H. Levetiracetam: the preclinical profile of a new class of antiepileptic drugs. Epilepsia 2001; 42 Suppl. 4: 13–8

    Article  PubMed  Google Scholar 

  126. Löscher W, Hönack D. Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. Eur J Pharmacol 1993; 232: 147–58

    Article  PubMed  Google Scholar 

  127. Bialer M, Johannessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the seventh Eilat conference (EILAT VII). Epilepsy Res 2004; 61: 1–48

    Article  PubMed  Google Scholar 

  128. Stables JP, Bialer M, Johannessen SI, et al. Progress report on new antiepileptic drugs: a summary of the second Eilat Conference. Epilepsy Res 1995; 22: 235–46

    Article  PubMed  CAS  Google Scholar 

  129. Harden C. Safety profile of levetiracetam. Epilepsia 2001; 42 Suppl. 4: 36–9

    Article  PubMed  Google Scholar 

  130. Patsalos PN. Pharmacokinetics profile of levetiracetam: toward ideal characteristics. Pharmacol Ther 2000; 85: 77–85

    Article  PubMed  CAS  Google Scholar 

  131. Radtke RA. Pharmacokinetics of levetiracetam. Epilepsia 2001; 42 Suppl. 4: 24–7

    Article  PubMed  Google Scholar 

  132. Data on file, UCB Pharma, Brussels, Belgium, 2001

  133. Warner G, Figgitt DP. Pregabalin: as adjunctive treatment of partial seizures. CNS Drugs 2005; 19: 265–72

    Article  PubMed  CAS  Google Scholar 

  134. Ben-Menachem E. Pregabalin pharmacology and its relevance to clinical practice. Epilepsia 2004; 45 Suppl. 6: 13–8

    Article  PubMed  CAS  Google Scholar 

  135. Elger CE, Brodie MJ, Anhut H, et al. Pregabalin add-on treatment in patients with partial seizures: a novel evaluation of flexible-dose and fixed-dose treatment in a double-blind, placebo-controlled study. Epilepsia 2005; 46: 1926–36

    Article  PubMed  CAS  Google Scholar 

  136. Hamandi K, Sander JW. Pregabalin: a new antiepileptic drug for refractory epilepsy. Seizure 2006; 15: 73–8

    Article  PubMed  Google Scholar 

  137. Sills GJ. The mechanisms of action of gabapentin and pregabalin. Curr Opin Pharmacol 2006; 6: 108–13

    Article  PubMed  CAS  Google Scholar 

  138. Berry D, Millington C. Analysis of pregabalin at therapeutic concentrations in human plasma/serum by reversed-phase HPLC. Ther Drug Monit 2005; 27: 451–6

    Article  PubMed  CAS  Google Scholar 

  139. Musicco M, Beghi E, Solari A, et al. Treatment of first tonic-clonic seizure does not improve the prognosis of epilepsy. Neurology 1997; 49: 991–8

    Article  PubMed  CAS  Google Scholar 

  140. Wiebe S. An evidence based approach to the first unprovoked seizure. Can J Neurol sci 2002; 29: 120–4

    PubMed  Google Scholar 

  141. Shinnar S, Berg AT, Moshe SL, et al. Risk of seizure recurrence following a first unprovoked seizure in childhood. Paediatrics 1990; 85: 1076–85

    CAS  Google Scholar 

  142. Hauser WA, Lee JR. Do seizures beget seizures? Prog Brain Res 2002; 135: 215–9

    Article  PubMed  Google Scholar 

  143. Hitiris N, Brodie MJ. Modern antiepileptic drugs: guidelines and beyond. Curr Opin Neurol 2006; 19: 175–80

    PubMed  Google Scholar 

  144. Genton P. When antiepileptic drugs aggravate epilepsy. Brain Dev 2000; 22: 75–80

    Article  PubMed  CAS  Google Scholar 

  145. French JA, Kanner AM, Bautista J, et al. Efficacy and tolerability of the new antiepileptic drugs II: treatment of refractory epilepsy. Report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 2004; 62: 1261–73

    CAS  Google Scholar 

  146. Perucca E. NICE guidance on newer drugs for epilepsy in adults. BMJ 2004; 328: 1273–4

    Article  PubMed  Google Scholar 

  147. Scottish Intercollegiate Guidelines Network. Diagnoses and management of epilepsy [online]. Available from URL: http://www.sign.ac.uk/pdf/sign70.pdf [Accessed 2004 Jul 31]

  148. Beghi E. Efficacy and tolerability of the new antiepileptic drugs: comparison of two recent guidelines. Lancet Neurol 2004; 3: 618–21

    Article  PubMed  CAS  Google Scholar 

  149. Glauser T, Ben-Menachem E, Bourgeois B, et al. ILAE treatment guidelines: evidence based analysis of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilesia 2006; 47: 1094–120

    Article  Google Scholar 

  150. Marson AG, Kadir ZA, Chadwick DW. New antiepileptic drugs: a systematic review of their efficacy and tolerability. BMJ 1996; 313: 1169–74

    Article  PubMed  CAS  Google Scholar 

  151. French JA, Kanner AM, Bautista J, et al. Efficacy and tolerability of the new antiepileptic drugs I: treatment of new onset epilepsy. Report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 2004; 62: 1250–60

    Google Scholar 

  152. Zaccara G, Messori A, Cincotta M, et al. Comparison of the efficacy and tolerability of new antiepileptic drugs: what can we learn from long-term studies? Acta Neurol Scand 2006: 114; 157–68

    Article  PubMed  CAS  Google Scholar 

  153. Cramer JA, Ben Menachem E, French J. Review of treatment options for refractory epilepsy: new medications and vagal nerve stimulation. Epilepsy Res 2001; 47: 17–25

    Article  PubMed  CAS  Google Scholar 

  154. Rowan AJ, Ramsay RE, Collins JF, et al. VA Cooperative Study 428 Group. New onset geriatric epilepsy: a randomized study of gabapentin, lamotrigine, and carbamazepine. Neurology 2005; 64: 1868–73

    CAS  Google Scholar 

  155. Guerreiro MM, Vigonius U, Pohlmann H, et al. A double-blind controlled clinical trial of oxcarbazepine versus phenytoin in children and adolescents with epilepsy. Epilepsy Res 1997; 27: 205–13

    Article  PubMed  CAS  Google Scholar 

  156. Morrow JI, Russell A, Gutherie E, et al. Malformation risks of anti-epileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register. J Neurol Neurosurg Psychiatry 2006; 77: 193–8

    Article  PubMed  CAS  Google Scholar 

  157. Vajda FJ, Eadie MJ. Maternal valproate dosage and foetal malformations. Acta Neurol Scand 2005; 112: 137–43

    Article  PubMed  CAS  Google Scholar 

  158. Tomson T, Ohman I, Vitols S. Lamotrigine in pregnancy and lactation: a case report. Epilepsia 1997; 38: 1039–41

    Article  PubMed  CAS  Google Scholar 

  159. de Haan GJ, Edelbroek P, Segers J, et al. Gestation-induced changes in lamotrigine pharmacokinetics: a monotherapy study. Neurology 2004; 63: 571–3

    Article  PubMed  CAS  Google Scholar 

  160. Ben-Menachem E, Axelsen M, Johanson EH, et al. Predictors of weight loss in adults with topiramate-treated epilepsy. Obes Res 2003; 11: 556–62

    Article  PubMed  CAS  Google Scholar 

  161. Krishnamoorthy ES. Psychiatric issues in epilepsy. Curr Opin Neurol 2001; 14: 217–24

    Article  PubMed  CAS  Google Scholar 

  162. Hauser WA, Lee JR. Do seizures beget seizures? Prog Brain Res 2002; 135: 215–9

    Article  PubMed  Google Scholar 

  163. Marson A, Jacoby A, Johnson A, et al. Immediate versus deferred antiepileptic drug treatment for early epilepsy and single seizures: a randomised controlled trial. Lancet 2005; 365: 2007–13

    Article  PubMed  CAS  Google Scholar 

  164. Kim LG, Johnson TL, Marson AG, et al. MRC MESS study group. Prediction of risk of seizure recurrence after a single seizure and early epilepsy: further results from the MESS trial. Lancet Neurol 2006; 5: 317–22

    Google Scholar 

  165. Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000; 342: 314–9

    Article  PubMed  CAS  Google Scholar 

  166. Brodie MJ, Yuen AW. Lamotrigine substitution study: evidence for synergism with sodium valproate? 105 Study Group. Epilepsy Res 1997; 26: 423–32

    Article  PubMed  CAS  Google Scholar 

  167. Delgado-Escueta AV, Enrile-Bacsal F. Juvenile-myoclonic epilepsy of Janz. Neurology 1984; 34: 285–94

    Article  PubMed  CAS  Google Scholar 

  168. Chadwick D, Taylor J, Johnson T, et al. Outcomes after seizure recurrence in people with well controlled epilepsy and the factors that influence it. Drug Withdrawal Group. Epilepsia 1996, 50

  169. Schmidt D, Loscher W. Uncontrolled epilepsy following discontinuation of antiepileptic drugs in seizure-free patients: a review of current clinical experience. Acta Neurol Scand 2005; 111: 291–300

    Article  PubMed  CAS  Google Scholar 

  170. Penneil PB. Using current evidence in selecting antiepileptic drugs for use during pregnancy. Epilepsy Curr 2005; 5: 45–51

    Article  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svein I. Johannessen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johannessen, S.I., Ben-Menachem, E. Management of Focal-Onset Seizures. Drugs 66, 1701–1725 (2006). https://doi.org/10.2165/00003495-200666130-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200666130-00004

Keywords

Navigation