Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 30, 2017

Toward the wider application of 29Si NMR spectroscopy to paramagnetic transition metal silicate minerals: Copper(II) silicates

  • Jonathan F. Stebbins EMAIL logo
From the journal American Mineralogist

Abstract

29Si NMR has only rarely been applied to silicate minerals in which the predominant cations have unpaired electron spins (e.g., most transition metals and REE), because of the potential for serious line broadening and signal loss. However, as shown here, spectra for a series of natural and synthetic copper(II) silicate minerals can be readily obtained, have paramagnetic shifts far outside known chemical shift ranges, and potentially are very sensitive to structural details involving interactions of paramagnetic cations and Si sites. Signals from different silicon sites in the structures can be distinguished and quantified. Peak broadening due to magnetic couplings and to disorder can be large, but not to the point of “non-observability.” NMR signal loss can be related to specific, and in some cases improvable, technical issues such as excitation bandwidth, sample spinning speed, and rapid nuclear spin relaxation. Two samples of the “mineraloid” chrysocolla from different copper ore deposits have very similar spectra with significant paramagnetic shifts, suggesting strong Si-Cu interactions and a common stoichiometry and short-range structure.

Acknowledgments

This work was supported by the National Science Foundation, EAR-1521055. The author thanks Juan Lezama Pacheco for collecting powder XRD data and Dale Burns for assistance with electron microprobe analyses. We thank two helpful reviewers and the associate editor for useful comments on the manuscript.

References cited

Bakhmutov, V.I., Shpeizer, B.G., Prosvirin, A.V., Dunbar, K.R., and Clearfield, A. (2009) On 29Si NMR relaxation as a structural criterion for studying paramagnetic supermicroporous silica-based materials: Silica-based materials incorporating Mn2+ ions into a silica matrix of SiO2-Al2O3-MnO. Solid State Nuclear Magnetic Resonance, 36, 129–136.10.1016/j.ssnmr.2009.08.002Search in Google Scholar

Begaudeau, K., Morizet, Y., Florian, P., Paris, M., and Mercier, J.-C. (2012) Solid-state NMR analysis of Fe-bearing minerals: implications and applications for Earth sciences. European Journal of Mineralogy, 24, 535–550.10.1127/0935-1221/2012/0024-2192Search in Google Scholar

Bertini, I., Luchinat, C., and Parigi, G. (2002) Magnetic susceptibility in paramagnetic NMR. Progress in Nuclear Magnetic Resonance Spectroscopy, 40, 249–273.10.1016/S0079-6565(02)00002-XSearch in Google Scholar

Bloise, A., Abd El Salam, S., De Luca, R., Crisci, G.M., and Miriello, D. (2016) Flux growth and characterization of cuprorivaite: the influence of temperature, flux, and silica source. Applied Physics A, 122, 650.10.1007/s00339-016-0198-1Search in Google Scholar

Bose, M., Bhattacharya, M., and Ganguli, S. (1979) 31P NMR studies of transferred hyperfine effects in rare-earth orthophosphates. Physical Review B, 19, 72–79.10.1103/PhysRevB.19.72Search in Google Scholar

Bregiroux, D., Audubert, F., Charpentier, T., Sakellariou, D., and Bernache-Assollant, D. (2007) Solid-state synthesis of monazite-type compounds LnPO4 (Ln = La to Gd). Solid State Sciences, 9, 432–439.10.1016/j.solidstatesciences.2007.03.019Search in Google Scholar

Breuer, K.-H., and Eysel, W. (1989) Structural and chemical varieties of dioptase, Cu6[Si6O18]·6H2O. Zeitschrift für Kristallographie, 187, 15–23.10.1524/zkri.1989.187.1-2.15Search in Google Scholar

Carlier, D., Ménétrier, M., Grey, C.P., Delmas, C., and Ceder, G. (2003) Understanding the NMR shift in paramagnetic transition metal oxides using density functional theory. Physical Review, 67, 174103.10.1103/PhysRevB.67.174103Search in Google Scholar

Chakoumakos, B.C., Fernandez-Baca, J.A., and Boatner, L.A. (1993) Refinement of the structures of the layer silicates MCuSi4O10 (M=Ca, Sr, Ba) by Rietveld analysis of neutron powder diffraction data. Journal of Solid State Chemistry, 103, 105–113.10.1006/jssc.1993.1083Search in Google Scholar

Clément, R.J., Pell, A.J., Middlemiss, D.S., Strobridge, F.C., Miller, J.K., Whittingham, M.S., Emsley, L., Grey, C.P., and Pintacuda, G. (2012) Spin-transfer pathways in paramagnetic lithium transition-metal phosphates from combined broadband isotropic solid-state MAS NMR spectroscopy and DFT calculations. Journal of the American Chemical Society, 134, 17178–17185.10.1021/ja306876uSearch in Google Scholar PubMed

Dogan, F., Vaughey, J.T., Iddir, H., and Key, B. (2016) Direct observation of lattice aluminum environments in Li ion cathodes LiNi1-y-zCoyAlzO2 and Al-doped LiNixMnyCozO2 via 27Al MAS NMR spectroscopy. ACS Applied Materials and Interfaces, 8, 16708–16717.10.1021/acsami.6b04516Search in Google Scholar PubMed

Engelhardt, G., and Michel, D. (1987) High-Resolution Solid-State NMR of Silicates and Zeolites, 485 p. Wiley, New York.Search in Google Scholar

Evans, H.T. Jr., and Mrose, M.E. (1977) The crystal chemistry of the hydrous copper silicates, shattuckite and planchéite. American Mineralogist, 62, 491–502.Search in Google Scholar

Farges, F., Benzerara, K., and Brown, G.E. Jr. (2007) Chrysocolla redefined as spertiniite. AIP Conference Proceedings, 882, 223–225.10.1063/1.2644481Search in Google Scholar

Frost, R.L., Xi, Y., and Wood, B.J. (2012) Thermogravimetric analysis, PXRD, EDX and XPS study of chrysocolla (Cu,Al)2H2Si2O5(OH)4·nH2O-structural implications. Thermochimica Acta, 545, 157–162.10.1016/j.tca.2012.07.011Search in Google Scholar

George, N.C., Pell, A.J., Dantelle, G., Page, K., Llobet, A., Balasubramanian, M., Pintacuda, G., Chmelka, B.F., and Seshadri, R. (2013) Local environments of dilute activator ions in the solid-state lighting phosphor Y3-xCexAl5O12. Chemistry of Materials, 25, 3979–3995.10.1021/cm401598nSearch in Google Scholar

Grey, C.P., and Dupré, N. (2004) NMR studies of cathode materials for lithium-ion rechargeable batteries. Chemical Reviews, 104, 4493–4512.10.1021/cr020734pSearch in Google Scholar PubMed

Grey, C.P., Dobson, C.M., Cheetham, A.K., and Jakeman, R.J.B. (1989) Studies of rare-earth stannates by 119Sn MAS NMR. The use of parmagnetic shift probes in the solid state. Journal of the American Chemical Society, 111, 505–511.10.1021/ja00184a017Search in Google Scholar

Grey, C.P., Smith, M.E., Cheetham, A.K., Dobson, R., and Dupree, R. (1990) Y-89 MAS NMR study of rare-earth pyrochlores-paramagnetic shifts in the solid state. Journal of the American Chemical Society, 112, 4670–4680.10.1021/ja00168a007Search in Google Scholar

Grimmer, A.-R., von Lampe, F., Mägi, M., and Lippmaa, E. (1983) Hochauflösende 29Si-NMR an festen Silicaten; Einfluss von Fe2+ in Olivinen. Zeitschrift für Chemie, 23, 343–344.10.1002/zfch.19830230917Search in Google Scholar

Hariu, T., Arima, H., and Sugiyama, K. (2013) The structure of hydrated copper-silicate gels, an analogue compound for natural chrysocolla. Journal of Mineralogical and Petrological Sciences, 108, 111–115.10.2465/jmps.121022cSearch in Google Scholar

Kim, J., Nielsen, U.G., and Grey, C.P. (2008) Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (γ-FeOOH) and goethite (α-FeOOH): A 2H and 7Li solid-state MAS NMR study. Journal of the American Chemical Society, 130, 1285–1295.10.1021/ja0761028Search in Google Scholar PubMed

Kim, J., Li, W., Phillips, B.L., and Grey, C.P. (2011) Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganite (β-FeOOH), and lepidocrocite (γ-FeOOH): a 31P NMR study. Energy & Environmental Science, 4, 4298–4305.10.1039/c1ee02093eSearch in Google Scholar

Law, J.M., Hoch, C., Whangbo, M.-H., and Kremer, R.K. (2010) Description of anhydrous (black) dioptase as a S=1/2 uniform antiferromagnetic chain system. Zeitschrift zur Anorganische und Allgemeine Chemie, 636, 54–61.10.1002/zaac.200900403Search in Google Scholar

Lee, J., Seymour, I.D., Pell, A.J., Dutton, S.E., and Grey, C.P. (2017) A systematic study of 25Mg NMR in paramagnetic transition metal oxides: applications to Mg-ion battery materials. Physical Chemistry Chemical Physics, 19, 613–625.10.1039/C6CP06338ASearch in Google Scholar

MacKenzie, K.J.D., and Smith, M.E. (2002) Multinuclear Solid-State NMR of Inorganic Materials, 727 p. Pergamon, New York.Search in Google Scholar

McCarty, R.J., and Stebbins, J.F. (2016) Investigating lanthanide dopant distributions in yttrium aluminum garnet (YAG) using solid state paramagnetic NMR. Solid State Nuclear Magnetic Resonance, 79, 11–22.10.1016/j.ssnmr.2016.10.001Search in Google Scholar PubMed

McCarty, R.J., Palke, A.C., Stebbins, J.F., and Hartman, J.S. (2015) Transition metal cation site preferences in forsterite (Mg2SiO4) determined from paramagnetically shifted NMR resonances. American Mineralogist, 100, 1265–1276.10.2138/am-2015-5150Search in Google Scholar

Michaelis, V.K., Greer, B.J., Aharen, T., Greedan, J.E., and Kroeker, S. (2012) Determining electron spin-transfer mechanisms in paramagnetic Ba2YMO6 (M=Mo, Re, Ru) double perovskites by 89Y and 137Ba MAS NMR spectroscopy. Journal of Physical Chemistry C, 116, 23646–23652.10.1021/jp308214dSearch in Google Scholar

Middlemiss, D.S., Ilott, A.J., Clément, R.J., Strobridge, F.C., and Grey, C.P. (2013) Density functional theory-based bond pathway decompositions of hyperfine shifts: equipping solid-state NMR to characterize atomic environments in paramagnetic materials. Chemistry of Materials, 25, 1723–1734.10.1021/cm400201tSearch in Google Scholar

Pabst, A. (1959) Structures of some tetragonal sheet silicates. Acta Crystallographica, 12, 733–739.10.1107/S0365110X5900216XSearch in Google Scholar

Palke, A.C., and Stebbins, J.F. (2011a) Variable temperature 27Al and 29Si NMR studies of synthetic forsterite and Fe-bearing Dora Maira pyrope garnet: temperature dependence and mechanisms of contact-shifted peaks. American Mineralogist, 96, 1090–1099.10.2138/am.2011.3686Search in Google Scholar

Palke, A.C., and Stebbins, J.F. (2011b) Paramagnetic interactions in the 31P NMR spectroscopy of rare earth element orthophosphate (REPO4, monazite/xenotime) solid solutions. American Mineralogist, 96, 1343–1353.10.2138/am.2011.3816Search in Google Scholar

Palke, A.C., Stebbins, J.F., Geiger, C.A., and Tippelt, G. (2015) Cation order-disorder in Fe-bearing pyrope and grossular garnets: An 27Al and 29Si MAS NMR and 57Fe Mössbauer spectroscopy study. American Mineralogist, 100, 536–547.10.2138/am-2015-5062Search in Google Scholar

Pell, A.J., and Pintacuda, G. (2015) Broadband solid-state MAS NMR of paramagnetic systems. Progress in Nuclear Magnetic Resonance, 84-85, 33–72.10.1016/j.pnmrs.2014.12.002Search in Google Scholar

Pradell, T., Salvado, N., Hatton, G.D., and Tite, M.S. (2006) Physical processes involved in the production of the ancient pigment, Egyptian blue. Journal of the American Ceramic Society, 89, 1426–1431.10.1111/j.1551-2916.2005.00904.xSearch in Google Scholar

Ribbe, P.H., Gibbs, G.V., and Hamil, M.M. (1977) A refinement of the structure of dioptase, Cu6[Si6O18]·6H2O. American Mineralogist, 62, 807–811.Search in Google Scholar

Saji, H., Yamadaya, T., and Asanuma, M. (1973) Nuclear magnetic resonances of 29Si and long-range superexchange interactions via Co-O-Si-O-Co linkages in Co2SiO4. Physics Letters, 45A, 109–110.10.1016/0375-9601(73)90445-3Search in Google Scholar

Stebbins, J.F., and Kelsey, K.E. (2009) Anomalous resonances in 29Si and 27Al NMR spectra of pyrope ([Mg,Fe]3Al2Si3O12) garnets: effects of paramagnetic cations. Physical Chemistry Chemical Physics, 11, 6906–6917.10.1039/b904731jSearch in Google Scholar

Stebbins, J.F., and Xue, X. (2014) NMR spectroscopy of inorganic Earth materials. In G.S. Henderson, D. Neuville, and R.T. Downs, Eds., Spectroscopic Methods in Mineralogy and Materials Sciences, 78, p. 605–653. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.10.2138/rmg.2014.78.15Search in Google Scholar

Stebbins, J.F., McCarty, R.J., and Palke, A.C. (2017) Solid-state NMR and short-range order in crystalline oxides and silicates: a new tool in paramagnetic resonances. Acta Crystallographica, C73, 128–136.10.1107/S2053229616015606Search in Google Scholar

Strobridge, F.C., Middlemiss, D.S., Pell, A.J., Leskes, M., Clément, R.J., Pourpoint, F., Lu, Z., Hanna, J.V., Pintacuda, G., Emsley, L., Samosen, A., and Grey, C.P. (2014) Characterizing local environments in high energy density Li-ion battery cathodes: a combined NMR and first principles study of LiFexCo1-xPO4. Journal of Materials Chemistry A, 2, 11948–11957.10.1039/C4TA00934GSearch in Google Scholar

Takahashi, T., Kawashima, H., Sugisawa, H., and Baba, T. (1999) 207Pb chemical shift thermometer at high temperature for magic angle spinning experiments. Solid State Nuclear Magnetic Resonance, 15, 119–123.10.1016/S0926-2040(99)00039-9Search in Google Scholar

Tucker, M.C., Doeff, M.M., Richardson, T.J., Finones, R., Reimer, J.A., and Carirns, E.J. (2002) 7Li and 31P magic angle spinning nuclear magnetic resonance of LiFePO4-type materials. Electrochemical and Solid-State Letters, 5, A95–A98.10.1149/1.1464505Search in Google Scholar

Yoon, W.S., Iannopollo, S., Grey, C.P., Carlier, D., Gorman, J., Reed, J., and Ceder, G. (2004) Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2–x)/3Li(1–2x)/3]O2. Electrochemical and Solid-State Letters, 7, A167–A171.10.1149/1.1737711Search in Google Scholar

Zeng, D., Cabana, J., Bréger, J., Yoon, W.S., and Grey, C.P. (2007) Cation ordering in Li[NixMnxCo(1–2x)]O2-layered cathode materials: a nuclear magnetic resonance (NMR), pair distribution function, X-ray absorption, and electrochemical study. Chemistry of Materials, 19, 6277–6289.10.1021/cm702241aSearch in Google Scholar

Received: 2017-4-28
Accepted: 2017-7-21
Published Online: 2017-11-30
Published in Print: 2017-12-20

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2138/am-2017-6176/html
Scroll to top button