Research Article
BibTex RIS Cite

Use of Monocalcium Phosphate Monohydrate for Chemical Immobilization of Heavy Metals Ions in Copper Smelting Slags

Year 2022, Volume: 24 Issue: 72, 973 - 981, 19.09.2022
https://doi.org/10.21205/deufmd.2022247225

Abstract

Monocalcium phosphate monohydrate (MCPM) with chemical formula of Ca(H2PO4)2.H2O is a water-soluble and powerful agent for metal ion immobilization (removal) in soil and water. The use of MCPM can, therefore, be considered as an innovative and effective way to remove the leachable heavy metals from copper smelting slag. This study aims to (1) characterize copper smelting slag and perform the batch precipitation tests using MCPM, (2) analyze the treated copper smelting slag (residue) by x-ray diffraction (XRD) and (3) elucidate the mechanism of MCPM on leachable heavy metal removal from slag.
The experimental results demonstrated that MCPM effectively removes Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr and Zn metal ions from copper smelting slag under different MCPM concentrations and reaction times. In addition, the XRD analysis reveals the formation of insoluble metal phosphates such as Cd3(PO4)2, Cu2(PO4)2OH, Fe3(PO4)2, Mn3(PO4)2, Pb3(PO4)2 and Zn3(PO4)2 in the residue of copper smelting slag.

Supporting Institution

Dokuz Eylül University Scientific Research Projects Coordination Council (BAP)

Project Number

FEN. 022 (201999)

Thanks

The authors are grateful for the financial support provided by Dokuz Eylül University Scientific Research Projects Coordination Council (BAP) with the project number 2020. KB. FEN. 022 (201999).

References

  • [1] Briffa, J., Sinagra, E., Blundell, R. 2020. Heavy Metal Pollution in the Environment and their Toxicological Effects on Humans, Heliyon, Elsevier, Cilt. 6, 9s, e04691.
  • [2] Masindi, V., Muedi, K. L. 2018. Environmental Contamination by Heavy Metals, Heavy Metals, 10s,115-132. Doi:10.5772/intechopen.76082.
  • [3] Musilova, J., Arvay, J., Vollmannova, A., Toth, T., Tomas, J. 2016. Environmental Contamination by Heavy Metals in Region with Previous Mining Activity, Bulletin of Environmental Contamination and Toxicology, Cilt. 97, 4s, 569-575. Doi: 10.1007/s00128-016-1907-3.
  • [4] Quina, M. J., Bordado, J. C. M., Quinta-Ferreira, R. M. 2010. Chemical Stabilization of Air Pollution Control Residues from Municipal Solid Waste Incineration, Journal of Hazardous Materials, Cilt. 179, 1–3s, 382–392. Doi: 10.1016/j.jhazmat.2010.03.016.
  • [5] Aide, M., Aide, C., Braden, I., Necas, K. 2019. Lead Immobilization using Triple Superphosphate in Impacted Floodplain Soils in East-Central Missouri (USA), International Journal of Applied, Cilt. 14, 2s, 93–105.
  • [6] Chen, S., Xu, M., Ma, Y., Yang, J. 2007. Evaluation of Different Phosphate Amendments on Availability of Metals in Contaminated Soil, Ecotoxicology and Environmental Safety, Cilt. 67, 2s, 278–285.
  • [7] Hong, C. O., Chung, D. Y., Lee, D. K., Kim, P. J. 2010. Comparison of Phosphate Materials for Immobilizing Cadmium in Soil, Archives of Environmental Contamination and Toxicology, Cilt. 58, 2s, 268–274. Doi: 10.1007/s00244-009-9363-2.
  • [8] Li, N., Tang, X., Yang, J., & Sun, Z. 2021. Restoration and Risk Reduction of Lead Mining Waste by Phosphate-Enriched Biosolid Amendments, Scientific Reports, Cilt. 11, 1s, 1-9. Doi: 10.1038/s41598-021-88576-y.
  • [9] Liu, B., He, Z., Liu, R., Montenegro, A. C., Ellis, M., Li, Q., Baligar, V. C. 2021. Comparative Effectiveness of Activated Dolomite Phosphate Rock and Biochar for Immobilizing Cadmium and Lead in Soils, Chemosphere, Cilt. 266, 129202. Doi: 10.1016/j.chemosphere.2020.129202.
  • [10] Mignardi, S., Corami, A., Ferrini, V. 2013. Immobilization of Co and Ni in Mining-Impacted Soils Using Phosphate Amendments, Water, Air, and Soil Pollution, Cilt. 224, 2s. Doi: 10.1007/s11270-013-1447-y.
  • [11] Munksgaard, N. C., Lottermoser, B. G., Blake, K. 2012. Prolonged Testing of Metal Mobility in Mining-Impacted Soils Amended with Phosphate Fertilisers, Water, Air, and Soil Pollution, Cilt. 223, 5s, 2237–2255. Doi: 10.1007/s11270-011-1019-y.
  • [12] Raicevic, S., Kaludjerovic-Radoicic, T., Zouboulis, A. I. 2005. In situ stabilization of Toxic Metals in Polluted Soils using Phosphates: Theoretical Prediction and Experimental Verification, Journal of Hazardous Materials, Cilt. 117, 1s, 41–53. Doi: 10.1016/j.jhazmat.2004.07.024.
  • [13] Valipour, M., Shahbazi, K., Khanmirzaei, A. 2016. Chemical Immobilization of Lead, Cadmium, Copper, and Nickel in Contaminated Soils by Phosphate Amendments, Clean - Soil, Air, Water, Cilt. 44, 5s. 572–578. Doi: 10.1002/clen.201300827.
  • [14] Wang, B., Xie, Z., Chen, J., Jiang, J., Su, Q. 2008. Effects of Field Application of Phosphate Fertilizers on the Availability and Uptake of Lead, Zinc and Cadmium by Cabbage (Brassica chinensis L.) in a Mining Tailing Contaminated Soil, Journal of Environmental Sciences (China), Cilt. 20, 9s, 1109–1117.
  • [15] Wang, Y. M., Chen, T. C., Yeh, K. J., Shue, M. F. 2001. Stabilization of an Elevated Heavy Metal Contaminated Site, Journal of Hazardous Materials, Cilt. 88, 1s, 63–74. Doi: 10.1016/S0304-3894(01)00289-8.
  • [16] Waterlot, C., Pruvot, C., Ciesielski, H., Douay, F. 2011. Effects of a Phosphorus Amendment and the pH of Water used for Watering on the Mobility and Phytoavailability of Cd, Pb and Zn in highly Contaminated Kitchen Garden Soils, Ecological Engineering, Cilt. 37, 7s, 1081–1093.
  • [17] Rizwan, M. S., Imtiaz, M., Zhu, J., Yousaf, B., Hussain, M., Ali, L., Ditta, A., Zahid Ihsan, M., Huang, G., Ashraf, M., Hu, H. 2021. Immobilization of Pb and Cu by Organic and Inorganic Amendments in Contaminated Soil, Geoderma, Cilt. 385, 114803. Doi:10.1016/j.geoderma.2020.114803.
  • [18] Zhu, Y., Zhu, Z., Zhao, X., Liang, Y., Dai, L., Huang, Y. 2015. Characterization, Dissolution and Solubility of Synthetic Cadmium Hydroxylapatite [Cd5(PO4)3OH] at 25-45°C, Geochemical Transactions, Cilt. 16, 1s, 1–11. Doi: 10.1186/s12932-015-0025-1.
  • [19] Kaya, E., Regan Sr, R. W., & Osseo-Asare, K. (1996). Thermodynamic Equilibrium of Lead and Iron with Triple Superphosphate. Transactions of the American Foundrymen's Society, Cilt. 104, 651-658.
  • [20] Lehr, J. R., Brown, W. E., Brown, E. H. 1959. Chemical Behavior of Monocalcium Phosphate Monohydrate in Soils, Soil Science Society of America Journal, Cilt. 23, 1s, 3-7. Doi:10.2136/sssaj1959.03615995002300010010x.
  • [21] Lindsay, W. L. 1979. Chemical Equilibria in Soils, John Wiley. New York, NY.
  • [22] Lindsay, W. L., Frazier, A. W., Stephenson, H. F. 1962. Identification of Reaction Products from Phosphate Fertilizers in Soils, Soil Science Society of America Journal, Cilt. 26, 5s, 446. Doi: 10.2136/sssaj1962.03615995002600050013x.
  • [23] Lindsay, W. L., Stephenson, H. F. 1959. Nature of the Reactions of Monocalcium Phosphate Monohydrate in Soils: II. Dissolution and precipitation reactions involving iron, aluminum, manganese, and calcium, Soil Science Society of America Journal, Cilt. 23, 1s, 18-22. Doi:10.2136/sssaj1959.03615995002300010013x.
  • [24] Lindsay, W. L., Stephenson, H. F. 1959. Nature of the Reactions of Monocalcium Phosphate monohydrate in soils: IV. Repeated reactions with metastable triple-point solution, Soil Science Society of America Journal, Cilt. 23, 6s, 440-445. Doi:10.2136/sssaj1959.03615995002300060023x.
  • [25] Souley Garba, M. C., Kaya, E., Gökelma, M., Seyrankaya, A. 2022. Investigating Triple Superphosphate for Lead Removal from Aqueous Solutions, Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 1–7. Doi: 10.1080/10934529.2022.2044221.
  • [26] Yoon, J. K., Cao, X. and Ma, L. Q. 2007. Application Methods Affect Phosphorus-Induced Lead Immobilization from a Contaminated Soil, Journal of Environmental Quality, Cilt. 36, 2s, 373–378. Doi: 10.2134/jeq2006.0316.
  • [27] Gökçe, B., Taşgetiren, S. 2009. Kalite İçin Deney Tasarımı. Makine Teknolojileri Elektronik Dergisi, Cilt. 61s, 71-83.
  • [28] Turan, N. G., Ergun, O. N. 2009. Removal of Cu(II) from leachate using natural zeolite as a landfill liner material’, Journal of Hazardous Materials, Cilt. 167, 1–3s, 696–700. Doi: 10.1016/j.jhazmat.2009.01.047.
  • [29] İbrahim, A. L. P., Kantarci, S. Pirit Külü ve Bakir Curufunun Ağir Ortam Malzemesi Olarak Uygunluğunun Araştirilmasi. Engineering Sciences, Cilt. 13, 1s, 1-12. Doi: 10.12739/NWSA.2018.13.1.1A0395.Alp.
  • [30] Ruşen, A., Geveci, A., Topkaya, Y. A., & Derin, B. 2012. Investigation of Effect of Colemanite Addition on Copper Losses in Matte Smelting slag, Canadian Metallurgical Quarterly, Cilt. 51, 2s, 157–169. Doi:10.1179/1879139512Y.0000000005
  • [31] Topçu, M. A., Rüşen, A., & Küçük. 2021. Treatment of Copper Converter Slag with Deep Eutectic Solvent as Green Chemical, Waste Management, Cilt. 132, 64–73. Doi:10.1016/j.wasman.2021.07.022.
  • [32] Corami, A., Mignardi, S., Ferrini, V. 2010. Removal of Lead, Copper, Zinc and Cadmium from Water using Phosphate Rock Acta Geologica Sinica - English Edition, Cilt. 82, 6s, 1223–1228. Doi: 10.1111/j.1755-6724.2008.tb00724.x.
  • [33] Feng, Y., Gong, J.L., Zeng, G.M., Niu, Q.Y., Zhang, H.Y., Niu, C.G., Deng, J.H., Yan, M., 2010. Adsorption of Cd (II) and Zn (II) from Aqueous Solutions using Magnetic Hydroxyapatite Nanoparticles as Adsorbents. Chemical Engineering Journal. Elsevier B.V., Cilt. 16, 22s, 487–494. Doi: 10.1016/j.cej.2010.05.049.
  • [34] Weber, J.S., Goyne, K.W., Luxton, T.P., Thompson, A.L., 2015. Phosphate Treatment of Lead‐Contaminated Soil: Effects on Water Quality, Plant Uptake, and Lead Speciation. Journal of Environmental Quality, Cilt. 44, 4s, 1127–1136. Doi: 10.2134/jeq2014.10.0447.
  • [35] Hettiarachchi, G. M., Pierzynski, G. M., Ransom, M. D. 2000. In situ stabilization of soil lead using phosphorus and manganese oxide, Environmental Science and Technology, Cilt. 34, 21s, 4614–4619. Doi: 10.1021/es001228p

Use of Monocalcium Phosphate Monohydrate for Chemical Immobilization of Heavy Metals from Copper Smelting Slag

Year 2022, Volume: 24 Issue: 72, 973 - 981, 19.09.2022
https://doi.org/10.21205/deufmd.2022247225

Abstract

Monocalcium phosphate monohydrate (MCPM) with chemical formula of Ca(H2PO4)2.H2O is a water-soluble and powerful agent for metal ions immobilization (removal) in soil and water. Therefore, the use of MCPM can be considered as an innovative and effective way to remove the leachable heavy metals from copper smelting slag. This study aims to (1) characterize copper smelting slag and perform the batch precipitation tests using MCPM, (2) analyze the treated copper smelting slag (residue) by x-ray diffraction (XRD) and (3) elucidate the mechanism of MCPM on leachable heavy metal removal from slag.
The experimental results demonstrated that MCPM removes effectively Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr and Zn metals ions from copper smelting slag under different MCPM concentrations and reaction times. In addition, the XRD analysis reveals the formation of insoluble metal phosphates such as Cd3(PO4)2, Cu2(PO4)2OH, Fe3(PO4)2, Mn3(PO4)2, Pb3(PO4)2 and Zn3(PO4)2 in the residue of copper smelting slag.

Kimyasal formülü Ca(H2PO4)2.H2O olan monokalsiyum fosfat monohidrat (MCPM), toprakta ve suda metal iyonlarını immobilize etmek için suda çözünebilen güçlü bir maddedir. Bu nedenle, MCPM kullanımı, bakır cürufundan çözünebilir ağır metallerin uzaklaştırılmasında yenilikçi ve etkili bir yol olarak düşünülebilir. Bu çalışmada; (1) bakır cürufunu karakterize etmek ve MCPM kullanarak bazı metallerin çökeltilmesini sağlamak, (2) metal uzaklaştırma (çökeltme) işleminden sonra elde edilen atığın x-ışını kırınımı (XRD) ile faz yapısını belirlemek, (3) cüruftan çözünebilir metal iyonların uzaklaştırılmasında MCPM mekanizmasının açıklanması amaçlanmıştır.
Deneysel sonuçlar, MCPM’nin farklı MCPM konsantrasyonları ve reaksiyon süreleri altında cüruf atığından Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr ve Zn metali iyonlarını etkin bir şekilde uzaklaştırdığını göstermiştir. Ayrıca, MCPM ile çöktürme işlemlerinden sonra elde edilen çökeltinin Cd3(PO4)2, Cu2(PO4)2OH, Fe3(PO4)2, Mn3(PO4)2, Pb3(PO4)2 ve Zn3(PO4)2 gibi çözünmeyen metal fosfat yapılarını içerdiği XRD analizleri ile tespit edilmiştir.

Project Number

FEN. 022 (201999)

References

  • [1] Briffa, J., Sinagra, E., Blundell, R. 2020. Heavy Metal Pollution in the Environment and their Toxicological Effects on Humans, Heliyon, Elsevier, Cilt. 6, 9s, e04691.
  • [2] Masindi, V., Muedi, K. L. 2018. Environmental Contamination by Heavy Metals, Heavy Metals, 10s,115-132. Doi:10.5772/intechopen.76082.
  • [3] Musilova, J., Arvay, J., Vollmannova, A., Toth, T., Tomas, J. 2016. Environmental Contamination by Heavy Metals in Region with Previous Mining Activity, Bulletin of Environmental Contamination and Toxicology, Cilt. 97, 4s, 569-575. Doi: 10.1007/s00128-016-1907-3.
  • [4] Quina, M. J., Bordado, J. C. M., Quinta-Ferreira, R. M. 2010. Chemical Stabilization of Air Pollution Control Residues from Municipal Solid Waste Incineration, Journal of Hazardous Materials, Cilt. 179, 1–3s, 382–392. Doi: 10.1016/j.jhazmat.2010.03.016.
  • [5] Aide, M., Aide, C., Braden, I., Necas, K. 2019. Lead Immobilization using Triple Superphosphate in Impacted Floodplain Soils in East-Central Missouri (USA), International Journal of Applied, Cilt. 14, 2s, 93–105.
  • [6] Chen, S., Xu, M., Ma, Y., Yang, J. 2007. Evaluation of Different Phosphate Amendments on Availability of Metals in Contaminated Soil, Ecotoxicology and Environmental Safety, Cilt. 67, 2s, 278–285.
  • [7] Hong, C. O., Chung, D. Y., Lee, D. K., Kim, P. J. 2010. Comparison of Phosphate Materials for Immobilizing Cadmium in Soil, Archives of Environmental Contamination and Toxicology, Cilt. 58, 2s, 268–274. Doi: 10.1007/s00244-009-9363-2.
  • [8] Li, N., Tang, X., Yang, J., & Sun, Z. 2021. Restoration and Risk Reduction of Lead Mining Waste by Phosphate-Enriched Biosolid Amendments, Scientific Reports, Cilt. 11, 1s, 1-9. Doi: 10.1038/s41598-021-88576-y.
  • [9] Liu, B., He, Z., Liu, R., Montenegro, A. C., Ellis, M., Li, Q., Baligar, V. C. 2021. Comparative Effectiveness of Activated Dolomite Phosphate Rock and Biochar for Immobilizing Cadmium and Lead in Soils, Chemosphere, Cilt. 266, 129202. Doi: 10.1016/j.chemosphere.2020.129202.
  • [10] Mignardi, S., Corami, A., Ferrini, V. 2013. Immobilization of Co and Ni in Mining-Impacted Soils Using Phosphate Amendments, Water, Air, and Soil Pollution, Cilt. 224, 2s. Doi: 10.1007/s11270-013-1447-y.
  • [11] Munksgaard, N. C., Lottermoser, B. G., Blake, K. 2012. Prolonged Testing of Metal Mobility in Mining-Impacted Soils Amended with Phosphate Fertilisers, Water, Air, and Soil Pollution, Cilt. 223, 5s, 2237–2255. Doi: 10.1007/s11270-011-1019-y.
  • [12] Raicevic, S., Kaludjerovic-Radoicic, T., Zouboulis, A. I. 2005. In situ stabilization of Toxic Metals in Polluted Soils using Phosphates: Theoretical Prediction and Experimental Verification, Journal of Hazardous Materials, Cilt. 117, 1s, 41–53. Doi: 10.1016/j.jhazmat.2004.07.024.
  • [13] Valipour, M., Shahbazi, K., Khanmirzaei, A. 2016. Chemical Immobilization of Lead, Cadmium, Copper, and Nickel in Contaminated Soils by Phosphate Amendments, Clean - Soil, Air, Water, Cilt. 44, 5s. 572–578. Doi: 10.1002/clen.201300827.
  • [14] Wang, B., Xie, Z., Chen, J., Jiang, J., Su, Q. 2008. Effects of Field Application of Phosphate Fertilizers on the Availability and Uptake of Lead, Zinc and Cadmium by Cabbage (Brassica chinensis L.) in a Mining Tailing Contaminated Soil, Journal of Environmental Sciences (China), Cilt. 20, 9s, 1109–1117.
  • [15] Wang, Y. M., Chen, T. C., Yeh, K. J., Shue, M. F. 2001. Stabilization of an Elevated Heavy Metal Contaminated Site, Journal of Hazardous Materials, Cilt. 88, 1s, 63–74. Doi: 10.1016/S0304-3894(01)00289-8.
  • [16] Waterlot, C., Pruvot, C., Ciesielski, H., Douay, F. 2011. Effects of a Phosphorus Amendment and the pH of Water used for Watering on the Mobility and Phytoavailability of Cd, Pb and Zn in highly Contaminated Kitchen Garden Soils, Ecological Engineering, Cilt. 37, 7s, 1081–1093.
  • [17] Rizwan, M. S., Imtiaz, M., Zhu, J., Yousaf, B., Hussain, M., Ali, L., Ditta, A., Zahid Ihsan, M., Huang, G., Ashraf, M., Hu, H. 2021. Immobilization of Pb and Cu by Organic and Inorganic Amendments in Contaminated Soil, Geoderma, Cilt. 385, 114803. Doi:10.1016/j.geoderma.2020.114803.
  • [18] Zhu, Y., Zhu, Z., Zhao, X., Liang, Y., Dai, L., Huang, Y. 2015. Characterization, Dissolution and Solubility of Synthetic Cadmium Hydroxylapatite [Cd5(PO4)3OH] at 25-45°C, Geochemical Transactions, Cilt. 16, 1s, 1–11. Doi: 10.1186/s12932-015-0025-1.
  • [19] Kaya, E., Regan Sr, R. W., & Osseo-Asare, K. (1996). Thermodynamic Equilibrium of Lead and Iron with Triple Superphosphate. Transactions of the American Foundrymen's Society, Cilt. 104, 651-658.
  • [20] Lehr, J. R., Brown, W. E., Brown, E. H. 1959. Chemical Behavior of Monocalcium Phosphate Monohydrate in Soils, Soil Science Society of America Journal, Cilt. 23, 1s, 3-7. Doi:10.2136/sssaj1959.03615995002300010010x.
  • [21] Lindsay, W. L. 1979. Chemical Equilibria in Soils, John Wiley. New York, NY.
  • [22] Lindsay, W. L., Frazier, A. W., Stephenson, H. F. 1962. Identification of Reaction Products from Phosphate Fertilizers in Soils, Soil Science Society of America Journal, Cilt. 26, 5s, 446. Doi: 10.2136/sssaj1962.03615995002600050013x.
  • [23] Lindsay, W. L., Stephenson, H. F. 1959. Nature of the Reactions of Monocalcium Phosphate Monohydrate in Soils: II. Dissolution and precipitation reactions involving iron, aluminum, manganese, and calcium, Soil Science Society of America Journal, Cilt. 23, 1s, 18-22. Doi:10.2136/sssaj1959.03615995002300010013x.
  • [24] Lindsay, W. L., Stephenson, H. F. 1959. Nature of the Reactions of Monocalcium Phosphate monohydrate in soils: IV. Repeated reactions with metastable triple-point solution, Soil Science Society of America Journal, Cilt. 23, 6s, 440-445. Doi:10.2136/sssaj1959.03615995002300060023x.
  • [25] Souley Garba, M. C., Kaya, E., Gökelma, M., Seyrankaya, A. 2022. Investigating Triple Superphosphate for Lead Removal from Aqueous Solutions, Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 1–7. Doi: 10.1080/10934529.2022.2044221.
  • [26] Yoon, J. K., Cao, X. and Ma, L. Q. 2007. Application Methods Affect Phosphorus-Induced Lead Immobilization from a Contaminated Soil, Journal of Environmental Quality, Cilt. 36, 2s, 373–378. Doi: 10.2134/jeq2006.0316.
  • [27] Gökçe, B., Taşgetiren, S. 2009. Kalite İçin Deney Tasarımı. Makine Teknolojileri Elektronik Dergisi, Cilt. 61s, 71-83.
  • [28] Turan, N. G., Ergun, O. N. 2009. Removal of Cu(II) from leachate using natural zeolite as a landfill liner material’, Journal of Hazardous Materials, Cilt. 167, 1–3s, 696–700. Doi: 10.1016/j.jhazmat.2009.01.047.
  • [29] İbrahim, A. L. P., Kantarci, S. Pirit Külü ve Bakir Curufunun Ağir Ortam Malzemesi Olarak Uygunluğunun Araştirilmasi. Engineering Sciences, Cilt. 13, 1s, 1-12. Doi: 10.12739/NWSA.2018.13.1.1A0395.Alp.
  • [30] Ruşen, A., Geveci, A., Topkaya, Y. A., & Derin, B. 2012. Investigation of Effect of Colemanite Addition on Copper Losses in Matte Smelting slag, Canadian Metallurgical Quarterly, Cilt. 51, 2s, 157–169. Doi:10.1179/1879139512Y.0000000005
  • [31] Topçu, M. A., Rüşen, A., & Küçük. 2021. Treatment of Copper Converter Slag with Deep Eutectic Solvent as Green Chemical, Waste Management, Cilt. 132, 64–73. Doi:10.1016/j.wasman.2021.07.022.
  • [32] Corami, A., Mignardi, S., Ferrini, V. 2010. Removal of Lead, Copper, Zinc and Cadmium from Water using Phosphate Rock Acta Geologica Sinica - English Edition, Cilt. 82, 6s, 1223–1228. Doi: 10.1111/j.1755-6724.2008.tb00724.x.
  • [33] Feng, Y., Gong, J.L., Zeng, G.M., Niu, Q.Y., Zhang, H.Y., Niu, C.G., Deng, J.H., Yan, M., 2010. Adsorption of Cd (II) and Zn (II) from Aqueous Solutions using Magnetic Hydroxyapatite Nanoparticles as Adsorbents. Chemical Engineering Journal. Elsevier B.V., Cilt. 16, 22s, 487–494. Doi: 10.1016/j.cej.2010.05.049.
  • [34] Weber, J.S., Goyne, K.W., Luxton, T.P., Thompson, A.L., 2015. Phosphate Treatment of Lead‐Contaminated Soil: Effects on Water Quality, Plant Uptake, and Lead Speciation. Journal of Environmental Quality, Cilt. 44, 4s, 1127–1136. Doi: 10.2134/jeq2014.10.0447.
  • [35] Hettiarachchi, G. M., Pierzynski, G. M., Ransom, M. D. 2000. In situ stabilization of soil lead using phosphorus and manganese oxide, Environmental Science and Technology, Cilt. 34, 21s, 4614–4619. Doi: 10.1021/es001228p
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Mahamane Chapiou Souley Garba 0000-0002-3182-3769

Erol Kaya 0000-0001-7874-7321

Abdullah Seyrankaya 0000-0003-2460-7731

Fatih Turan 0000-0002-9969-0405

Project Number FEN. 022 (201999)
Publication Date September 19, 2022
Published in Issue Year 2022 Volume: 24 Issue: 72

Cite

APA Souley Garba, M. C., Kaya, E., Seyrankaya, A., Turan, F. (2022). Use of Monocalcium Phosphate Monohydrate for Chemical Immobilization of Heavy Metals Ions in Copper Smelting Slags. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 24(72), 973-981. https://doi.org/10.21205/deufmd.2022247225
AMA Souley Garba MC, Kaya E, Seyrankaya A, Turan F. Use of Monocalcium Phosphate Monohydrate for Chemical Immobilization of Heavy Metals Ions in Copper Smelting Slags. DEUFMD. September 2022;24(72):973-981. doi:10.21205/deufmd.2022247225
Chicago Souley Garba, Mahamane Chapiou, Erol Kaya, Abdullah Seyrankaya, and Fatih Turan. “Use of Monocalcium Phosphate Monohydrate for Chemical Immobilization of Heavy Metals Ions in Copper Smelting Slags”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 24, no. 72 (September 2022): 973-81. https://doi.org/10.21205/deufmd.2022247225.
EndNote Souley Garba MC, Kaya E, Seyrankaya A, Turan F (September 1, 2022) Use of Monocalcium Phosphate Monohydrate for Chemical Immobilization of Heavy Metals Ions in Copper Smelting Slags. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24 72 973–981.
IEEE M. C. Souley Garba, E. Kaya, A. Seyrankaya, and F. Turan, “Use of Monocalcium Phosphate Monohydrate for Chemical Immobilization of Heavy Metals Ions in Copper Smelting Slags”, DEUFMD, vol. 24, no. 72, pp. 973–981, 2022, doi: 10.21205/deufmd.2022247225.
ISNAD Souley Garba, Mahamane Chapiou et al. “Use of Monocalcium Phosphate Monohydrate for Chemical Immobilization of Heavy Metals Ions in Copper Smelting Slags”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24/72 (September 2022), 973-981. https://doi.org/10.21205/deufmd.2022247225.
JAMA Souley Garba MC, Kaya E, Seyrankaya A, Turan F. Use of Monocalcium Phosphate Monohydrate for Chemical Immobilization of Heavy Metals Ions in Copper Smelting Slags. DEUFMD. 2022;24:973–981.
MLA Souley Garba, Mahamane Chapiou et al. “Use of Monocalcium Phosphate Monohydrate for Chemical Immobilization of Heavy Metals Ions in Copper Smelting Slags”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 24, no. 72, 2022, pp. 973-81, doi:10.21205/deufmd.2022247225.
Vancouver Souley Garba MC, Kaya E, Seyrankaya A, Turan F. Use of Monocalcium Phosphate Monohydrate for Chemical Immobilization of Heavy Metals Ions in Copper Smelting Slags. DEUFMD. 2022;24(72):973-81.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.