Skip to main content

Advertisement

Log in

Ligand Exchange Reactions of a Monomeric Zirconium Carbonate Complex with Carboxylic Acids Studied by Extended X-ray Absorption Fine Structure, UV Absorption and Raman Spectrophotometry

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Ligand exchange reactions of a monomeric zirconium carbonate complex with carboxylic acids were studied by means of extended X-ray absorption fine structure (EXAFS), UV absorption spectrophotometry and Raman spectrometry. Three carboxylic acids, gluconic acid, and L-tartaric acid and citric acid, which are mono-, di- and tri-carboxylic acids, respectively, were employed in this study. These three carboxylic acids gave different spectral signatures and concentration dependences, respectively. In the gluconic acid system, the peaks on Fourier transform of EXAFS spectrum and Raman spectrum caused by carbonate ion coordinating to zirconium atom were obviously decreased with increasing gluconic acid concentration compared to the other two carboxylic acid systems. This indicates the high association ability of gluconic acid to zirconium, which was revealed by UV spectrophotometric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Denry and J. R. Kelly, Dent. Mater., 2008, 24, 299.

    Article  CAS  PubMed  Google Scholar 

  2. C. Piconi and G. Maccauro, Biomaterials, 1999, 20, 1.

    Article  CAS  PubMed  Google Scholar 

  3. M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, Biomaterials, 2006, 27, 1728.

    Article  CAS  PubMed  Google Scholar 

  4. D. W. Shoesmith and D. Zagidulin, J. Nucl. Mater., 2011, 418, 292.

    Article  CAS  Google Scholar 

  5. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rödel, J. Electroceram., 2012, 29, 71.

    Article  CAS  Google Scholar 

  6. A. J. Gaunt, I. May, D. Collison, K. Travis Holman, and M. T. Pope, J. Mol. Struct., 2003, 656, 101.

    Article  CAS  Google Scholar 

  7. M. Sanz, M. E. G. Mosquera, and T. Cuenca, Dalton Trans., 2009, 2616.

    Google Scholar 

  8. A. Clearfield and Z. Wang, J. Chem. Soc. Dalton Trans., 2002, 2937.

    Google Scholar 

  9. K. J. Gagnon, H. P. Perry and A. Clearfield, Chem. Rev., 2012, 112, 1034.

    Article  CAS  PubMed  Google Scholar 

  10. E. Farnworth, S. L. Jones, and I. McAlpine, “The Production, Properties, and Uses of Zirconium Chemicals”, in “Specialty Inorganic Chemicals”, ed. R. Thompson, 1980, Royal Society of Chemistry, London, 248.

    Google Scholar 

  11. C. Walther, J. Rothe, M. Fuss, S. Büchner, S. Koltsov, and T. Bergmann, Anal. Bioanal. Chem., 2007, 388, 409.

    Article  CAS  PubMed  Google Scholar 

  12. P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Reviews of Modern Physics, 1981, 53, 769.

    Article  CAS  Google Scholar 

  13. F. Takasaki, K. Fujiwara, Y. Nakajima, T. Nishikawa, and N. Ogawa, Chem. Lett., 2014, 43, 196.

    Article  CAS  Google Scholar 

  14. F. Takasaki, K. Fujiwara, Y. Nakajima, T. Nishikawa, H. Masu, M. Imanari, Y. Hidaka, and N. Ogawa, Dalton Trans., 2015, 44, 645.

    Article  CAS  PubMed  Google Scholar 

  15. F. Takasaki, N. Ogawa, I. Watanabe, T. Suzuki, Y. Nakajima, T. Wakita, and R. Suzuki, Bunseki Kagaku, 2010, 59, 447.

    Article  CAS  Google Scholar 

  16. P. L. Brown, E. Curti, B. Grambow, and C. Ekberg, “Chemical Thermodynamics of Zirconium”, ed. F. J. Mompean, J. Perrone, and M. Illemassène, 2006, Elsevier Science.

  17. M. T. Beck and I. Nagypal, “Chemistry of Complex Equilibria, Enlarged and Completely Revised Version”, ed. E. Horwood, 1990, Halsted Press, Australia.

  18. D. K. Chakravorty, R. Ghosh, R. Banerjee, and D. Sarkar, Polyhedron, 2009, 28, 1315.

    Article  CAS  Google Scholar 

  19. For example, commercially available as “Ammonium Zirconium(IV) Carbonate Solution in H2O, Contains 1-2% Tartaric Acid as Stabilizer”, from Sigma-Aldrich, CAS No. 12616-24-9.

  20. E. M. Larsen and E. H. Homeier, Inorg. Chem., 1972, 11, 2687.

    Article  CAS  Google Scholar 

  21. A. Clearfield, Inorg. Chim. Acta, 1970, 4, 166.

    Article  CAS  Google Scholar 

  22. S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, Phys. Rev. B, 1995, 52, 2995.

    Article  CAS  Google Scholar 

  23. C. V. Kumar and Z. J. Williams, J. Phys. Chem., 1995, 99, 17632.

    Article  CAS  Google Scholar 

  24. F. Takasaki, Japan Patent, 2017, 6103818.

    Google Scholar 

Download references

Acknowledgments

The synchrotron radiation EXAFS experiment was performed at the BL14B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2010B1961, 2011B1826 and 2012A1777). We would like to thank Prof. Iwao Watanabe, Dr. Hiroshi Oji and Dr. Yosuke Taniguchi for help on EXAFS measurements and analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fumiyuki Takasaki, Kazuhiko Fujiwara or Nobuaki Ogawa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takasaki, F., Fujiwara, K., Kikuchi, T. et al. Ligand Exchange Reactions of a Monomeric Zirconium Carbonate Complex with Carboxylic Acids Studied by Extended X-ray Absorption Fine Structure, UV Absorption and Raman Spectrophotometry. ANAL. SCI. 33, 1007–1012 (2017). https://doi.org/10.2116/analsci.33.1007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.1007

Keywords

Navigation