Skip to main content
Log in

Rare Elements Electrochemistry: The Development of a Novel Electrochemical Sensor for the Rapid Detection of Europium in Environmental Samples Using Gold Electrode Modified with 2-pyridinol-1-oxide

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This work presents for the first time the electrochemical determination of europium using cyclic voltammetry at gold electrodes modified with 2-pyridinol-1-oxide. A well-defined oxidation peak was observed in cyclic voltammetry as a result of the oxidation of the europium at ~1100 mV in phosphate buffer at pH 7.0. The peak current increased linearly with the increase of concentration of the europium over the range from 1 to 80 μM and detection limit (based on 3-sigma) and quantification were found to be 0.3 and 0.549 μM, respectively. The analytical utility of the developed protocol was evaluated by performing the detection of the europium in river water. Europium is also linear over the concentration range 10 to 150 μM. (I1√μA = 0.7239x + 108.19, R2 = 0.9981 and n = 9) with a detection limit of 6.5 μM (based on 3-sigma). This simple and effective protocol exhibited good sensitivity, precision and reliability towards the detected analyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Zawisza, K. Pytlakowska, B. Feist, M. Polowniak, A. Kita, R. Sitko, J. Anal. At. Spectrom., 2011, 26, 2373.

    Article  CAS  Google Scholar 

  2. W. Yantasee, G. E. Fryxell, R. S. Addleman, R. J. Wiacek, V. Koonsiripaiboon, K. Pattamakomsan, V. Sukwarotwat, J. Xu, K. N. Raymond, J. Hazard. Mater., 2009, 768, 1233.

    Article  Google Scholar 

  3. L. Liu and J. Song, Anal. Biochem., 2006, 354, 22.

    Article  Google Scholar 

  4. B. E. Johnson, P. H. Santschi, C.-Y. Chuang, S. Otosaka, R. S. Addleman, M. Douglas, R. D. Rutledge, W. Chouyyok, J. D. Davidson, G. E. Fryxell, J. M. Schwantes, Environ. Sci. Technol., 2012, 46, 11251.

    Article  CAS  PubMed  Google Scholar 

  5. M. Kumar, Analyst, 1994, 779, 2013.

    Article  Google Scholar 

  6. C. J. Kantipuly and A. D. Westland, Talanta, 1988, 35, 1.

    Article  Google Scholar 

  7. V. Balaram, TrAC, Trends Anal. Chem., 1996, 75, 475.

    Google Scholar 

  8. T. P. Rao and V. M. Biju, Crit. Rev. Anal. Chem., 2000, 30, 179.

    Article  Google Scholar 

  9. L.O. Dubenskaya, G.D. Levitskaya, N.P. Poperechnaya, J. Anal. Chem., 2005, 60, 304.

    Article  CAS  Google Scholar 

  10. J. Riondato, F. Vanhaecke, L. Moens, R. Dams, Fresenius' J. Anal. Chem., 2001, 370, 544.

    Article  CAS  PubMed  Google Scholar 

  11. R. Djingova and J. Ivanova, Talanta, 2002, 57, 821.

    Article  PubMed  Google Scholar 

  12. Z.-H. Wang, X.-P. Yan, Z.-P. Wang, Z.-P. Zhang, L.-W. Liu, J. Am. Soc. Mass Spectrom., 2006, 77, 1258.

    Article  Google Scholar 

  13. A. K. H. Wood, J. Radioanal. Nucl. Chem., 2001, 249, 333.

    Article  Google Scholar 

  14. C. Tedeschi, J. Azema, H. Gornitzka, P. Tisnes, C. Picard, Dalton Trans., 2003, 1738.

    Google Scholar 

  15. J. L. Adcock, C. J. Barrow, N. W. Barnett, X. A. Conlan, C. F. Hogan, P. S. Francis, Drug Test Anal., 2011, 3, 145.

    Article  CAS  PubMed  Google Scholar 

  16. C.-H. Lien, K.-H. Chang, C.-C. Hu, D. Shan-Hill Wang, J. Electrochem. Soc., 2013, 760, B107.

    Article  Google Scholar 

  17. D. Yuan, S. Chen, R. Yuan, J. Zhang, W. Zhang, Analyst, 2013, 738, 6001.

    Article  Google Scholar 

  18. C. Qihong, C. Lifen, L. Fang, Q. Bin, L. Zhenyu, C. Guonan, Anal. Bioanal. Chem., 2011, 400, 289.

    Article  Google Scholar 

  19. Z. Cai, Z. Lin, X. Chen, T. Jia, P. Yu, X. Chena, Luminescence, 2010, 24, 367.

    Article  Google Scholar 

  20. H. Dai, Y. Wang, X. Wu, L. Zhang, G. Chen, Biosens. Bioelectron., 2009, 24, 1230.

    Article  CAS  PubMed  Google Scholar 

  21. C. S. Haslag and M. M. Richter, J. Lumin., 2012, 732, 636.

    Google Scholar 

  22. H.-J. Li, S. Han, L.-Z. Hu, G.-B. Xu, Chin. J. Anal. Chem., 2009, 37, 1557.

    Article  CAS  Google Scholar 

  23. R. G. Garvey, J. H. Nelson, R. O. Rasdale, Coord. Chem. Rev., 1968, 3, 375.

    Article  CAS  Google Scholar 

  24. M. Polasek, J. Rudovsky, P. Hermann, I. Lukes, L. V. Elst, R. N. Muller, Chem. Commun., 2004, 2602.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank IDEAS research institute for research and support. CF would also like to thank the School of Pharmacy and Life Sciences for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Fernandez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruickshank, L., Officer, S., Pollard, P. et al. Rare Elements Electrochemistry: The Development of a Novel Electrochemical Sensor for the Rapid Detection of Europium in Environmental Samples Using Gold Electrode Modified with 2-pyridinol-1-oxide. ANAL. SCI. 31, 623–627 (2015). https://doi.org/10.2116/analsci.31.623

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.623

Keywords

Navigation