Skip to main content
Log in

Fabrication and Characterization of a Thermostable Quinoprotein Aldose Sugar Dehydrogenase Immobilized Electrode

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We fabricated a thermostable quinoprotein aldose sugar dehydrogenase (tPQQ-ASD derived from a hyperthermophilic archaeon Pyrobaculum aerophilum) immobilized electrode. The electrode was prepared by immobilizing agarose gel mixed with the enzyme and carbon nanofiber (CNF) on a carbon paste (CP) electrode containing p-benzoquinone (BQ) as an electron mediator. The electrocatalytic response was clearly observed by the addition of D-glucose at the electrode. The electrode properties such as pH, temperature dependency and substrate selectivity basically followed the enzyme properties. The current response against D-glucose increased with measurement temperatures up to 70°C, and response perturbation caused by dissolved oxygen level was not observed at the electrode. As for the results of long-term stability evaluation, the current response was stable for 30 days when the electrode was stored in HEPES buffer solution (pH 7.0) at 4°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. M. Southall, J. J. Doel, D. J. Richardson, and A. Oubrie, J. Biol. Chem., 2006, 281, 30650.

    Article  CAS  PubMed  Google Scholar 

  2. K. Sode and K. Kojima, Biotechnol. Lett., 1997, 19, 1073.

    Article  CAS  Google Scholar 

  3. J. A. Duine, J. Frank, and J. K. van Zeeland, FEBS Lett., 1979, 108, 443.

    Article  CAS  PubMed  Google Scholar 

  4. L. Marcinkeviciene, I. Bachmatova, R. Semenaite, R. Rudomanskis, G. Brazenas, R. Meskiene, and R. Meskys, Biotechnol. Lett., 1999, 21, 187.

    Article  Google Scholar 

  5. S. Igarashi, T. Hirokawa, and K. Sode, Biomol. Eng., 2004, 21, 81.

    Article  CAS  PubMed  Google Scholar 

  6. H. Yoshida, N. Araki, A. Tomisaka, and K. Sode, Enzyme Microb. Technol., 2002, 30, 312.

    Article  CAS  Google Scholar 

  7. S. Igarashi, T. Ohtera, H. Yoshida, A. B. Witarto, and K. Sode, Biochem. Biophys. Res. Commun., 1999, 264, 820.

    Article  CAS  PubMed  Google Scholar 

  8. K. Sode, W. Tsugawa, T. Yamazaki, M. Watanabe, N. Ogasawara, and M. Tanaka, Enzyme Microb. Technol., 1996, 19, 82.

    Article  CAS  Google Scholar 

  9. T. Yamazaki, W. Tsugawa, and K. Sode, Appl. Biochem. Biotechnol., 1999, 77, 325.

    Article  Google Scholar 

  10. K. Sode, K. Watanabe, S. Ito, K. Matsumura, and T. Kikuchi, FEBS Lett., 1995, 364, 325.

    Article  CAS  PubMed  Google Scholar 

  11. X. Wang, D. Li, T. Watanabe, Y. Shigemori, T. Mikawa, T. Okajima, L. Mao, and T. Ohsaka, Int. J. Electrochem. Sci., 2012, 7, 1071.

    Article  CAS  Google Scholar 

  12. A. M. Cleton-Jansen, S. Dekker, P. van de Putte, and N. Goosen, Mol. Gen. Genet., 1991, 229, 206.

  13. S. Igarashi, J. Okuda, K. Ikebukuro, and K. Sode, Arch. Biochem. Biophys., 2004, 428, 52.

    Article  CAS  PubMed  Google Scholar 

  14. Y. Ito, S. Yamazaki, K. Kano, and T. Ikeda, Biosens. Bioelectron., 2002, 17, 993.

    Article  CAS  PubMed  Google Scholar 

  15. J. Okuda, J. Wakai, N. Yuhashi, and K Sode, Biosens. Bioelectron., 2003, 18, 699.

    Article  CAS  PubMed  Google Scholar 

  16. C. Lau, S. Borgmann, M. Maciejewska, B. Ngounou, P. Grundler, and W. Schuhmann, Biosens. Bioelectron., 2007, 22, 3014.

    Article  CAS  PubMed  Google Scholar 

  17. V. Laurinavicius, B. Kurtinaitiene, and R. Stankeviciute, Electroanalysis, 2008, 20, 1391.

    Article  CAS  Google Scholar 

  18. A. Malinauskas, J. Kuzmarskyte, R. Meskys, and A. Ramanavicius, Sens. Actuators, B, 2004, 100, 387.

    Article  CAS  Google Scholar 

  19. N. Yuhashi, M. Tomiyama, J. Okuda, S. Igarashi, K. Ikebukuro, and K. Sode, Biosens. Bioelectron., 2005, 20, 2145.

    Article  CAS  PubMed  Google Scholar 

  20. H. Yoshida, T. Iguchi, and K. Sode, Biotechnol. Lett., 2000, 22, 1505.

    Article  CAS  Google Scholar 

  21. H. Sakuraba, K. Yokono, K. Yoneda, A. Watanabe, Y. Asada, T. Satomura, T. Yabutani, J. Motonaka, and T. Ohshima, Arch. Biochem. Biophys., 2010, 502, 81.

    Article  CAS  PubMed  Google Scholar 

  22. B. Leca and J.-L. Marty, Biosens. Bioelectron., 1997, 12, 1083.

    Article  CAS  Google Scholar 

  23. M. Tsujimoto, T. Yabutani, A. Sano, Y. Tani, H. Murotani, Y. Mishima, K. Maruyama, M. Yasuzawa, and J. Motonaka, Anal. Sci., 2007, 23, 59.

    Article  CAS  PubMed  Google Scholar 

  24. M. Yasuzawa, K. Edagawa, T. Matsunaga, H. Takaoka, and T. Yabutani, Anal. Sci., 2011, 27, 337.

    Article  CAS  PubMed  Google Scholar 

  25. M. Smolander, L. Gorton, H. S. Lee, T. Skotheim, and H.-L. Lan, Electroanalysis, 1995, 7, 941.

    Article  CAS  Google Scholar 

  26. M. Smolander, G. Marko-Varga, and L. Gorton, Anal. Chim. Acta, 1995, 302, 233.

    Article  CAS  Google Scholar 

  27. Y. Yamada, Y. Ohnishi, T. Hayashi, Y. Isobe, and T. Yabutani, Int. J. Mod. Phys. Conf. Ser., 2012, 6, 721.

    Article  CAS  Google Scholar 

  28. L. D. Unsworth, J. Van der Oost, and S. Koutsopoulos, FEBS J., 2007, 274, 4044.

    Article  CAS  PubMed  Google Scholar 

  29. Y. Tani, K. Tanaka, T. Yabutani, Y. Mishima, H. Sakuraba, T. Ohshima, and J. Motonaka, Anal. Chim. Acta, 2008, 619, 215.

    Article  CAS  PubMed  Google Scholar 

  30. K. Miki, T. Ikeda, S. Todoriki, and M. Senda, Anal. Sci., 1989, 5, 269.

    Article  CAS  Google Scholar 

  31. M. Aklilu, M. Tessema, and M. Redi-Abshiro, Talanta, 2008, 76, 742.

    Article  CAS  PubMed  Google Scholar 

  32. S. E. Stanca and I. C. Popescu, J. Mol. Catal. B: Enzym., 2004, 27, 221.

    Article  CAS  Google Scholar 

  33. S. E. Stanca, I. C. Popescu, and L. Oniciu, Talanta, 2003, 61, 501.

    Article  CAS  PubMed  Google Scholar 

  34. R. Nenkova, D. Ivanova, J. Vladirova, and T. Godjevargova, Sens. Actuators, B, 2010, 148, 59.

    Article  CAS  Google Scholar 

  35. C.-M. Yu, M.-J. Yen, and L.-C. Chen, Biosens. Bioelectron., 2010, 25, 2515.

    Article  CAS  PubMed  Google Scholar 

  36. V. Stavyiannoudaki, V. Vamvakaki, and N. Chaniotakis, Anal. Bioanal. Chem., 2009, 395, 429.

    Article  CAS  PubMed  Google Scholar 

  37. Y. Tani, Y. Itoyama, K. Nishi, C. Wada, Y. Shoda, T. Satomura, H. Sakuraba, T. Ohshima, Y. Hayashi, T. Yabutani, and J. Motonaka, Anal. Sci., 2009, 25, 919.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoki Yabutani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, Y., Hayashi, T., Sakuraba, H. et al. Fabrication and Characterization of a Thermostable Quinoprotein Aldose Sugar Dehydrogenase Immobilized Electrode. ANAL. SCI. 29, 79–83 (2013). https://doi.org/10.2116/analsci.29.79

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.29.79

Navigation