Skip to main content
Log in

Real-Time Two-Dimensional Imaging of Potassium Ion Distribution Using an Ion Semiconductor Sensor with Charged Coupled Device Technology

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Two-dimensional real-time observation of potassium ion distributions was achieved using an ion imaging device based on charge-coupled device (CCD) and metal-oxide semiconductor technologies, and an ion selective membrane. The CCD potassium ion image sensor was equipped with an array of 32 x 32 pixels (1024 pixels). It could record five frames per second with an area of 4.16 x 4.16 mm2. Potassium ion images were produced instantly. The leaching of potassium ion from a 3.3 M KCl Ag/AgCl reference electrode was dynamically monitored in aqueous solution. The potassium ion selective membrane on the semiconductor consisted of plasticized poly(vinyl chloride) (PVC) with bis(benzo-15-crown-5). The addition of a polyhedral oligomeric silsesquioxane to the plasticized PVC membrane greatly improved adhesion of the membrane onto Si3N4 of the semiconductor surface, and the potential response was stabilized. The potential response was linear from 10–2 to 10–5 M logarithmic concentration of potassium ion. The selectivity coefficients were \(K_{{{\rm{K}}^ + }{\rm{,L}}{{\rm{i}}^ + }}^{{\rm{pot}}}{\rm{ = 1}}{{\rm{0}}^{ - 2.85}},{\rm{ }}K_{{{\rm{K}}^ + }{\rm{,N}}{{\rm{a}}^ + }}^{{\rm{pot}}}{\rm{ = 1}}{{\rm{0}}^{ - 2.30}},{\rm{ }}K_{{{\rm{K}}^ + }{\rm{,R}}{{\rm{b}}^ + }}^{{\rm{pot}}}{\rm{ = 1}}{{\rm{0}}^{ - 1.16}},\) and \(K_{{{\rm{K}}^ + }{\rm{,C}}{{\rm{s}}^ + }}^{{\rm{pot}}}{\rm{ = 1}}{{\rm{0}}^{ - 2.05}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Navratil, G. A. Mabbott, and E. A. Arriage, Anal. Chem., 2006, 78, 4005.

    Article  CAS  PubMed  Google Scholar 

  2. D. Hafeman, J. Parce, and H. McConnell, Science, 1988, 240, 1182.

    Article  CAS  PubMed  Google Scholar 

  3. T. Wagner, R. Molina, T. Yoshinobu, J. P. Kloock, M. Biselli, M. Canzoneri, T. Schnitzler, and M. J. Schöning, Electrochim. Acta, 2007, 53, 305.

    Article  CAS  Google Scholar 

  4. M. J. Milgrew, M. O. Riehle, and D. R. S. Cumming, Sens. Actuators, B, 2005, 111–112, 347.

    Article  Google Scholar 

  5. K. Sawada, S. Mimura, K. Tomita, T. Nakanishi, H. Tanabe, M. Ishida, and T. Ando, IEEE T. Electron Dev., 1999, 46, 1846.

    Article  CAS  Google Scholar 

  6. T. Hizawa, K. Sawada, H. Takao, and M. Ishida, Sens. Actuators, B, 2006, 117, 509.

    Article  CAS  Google Scholar 

  7. T. Hizawa, J. Matsuo, T. Ishida, H. Takao, H. Abe, K. Sawada, and M. Ishida, IEEE Transducers & Eurosensors ‘07, 2007, 1311.

  8. M. Nomura, T. Nakao, T. Nakanishi, S. Takamatsu, and K. Tomita, Anal. Chem., 1997, 68, 977.

    Article  Google Scholar 

  9. Y. Maruyama, S. Terao, and K. Sawada, Biosens. Bioelectron., 2009, 24, 3108.

    Article  CAS  PubMed  Google Scholar 

  10. E. Eya and G. A. Rechnitz, Anal. Chem., 1971, 43, 370.

    Google Scholar 

  11. O. Ryba and J. Petránek, J. Electroanal. Chem., 1973, 44, 425.

    Article  CAS  Google Scholar 

  12. R. W. Cattrall, S. Tribuzio, and H. Freiser, Anal. Chem., 1974, 46, 2223.

    Article  CAS  PubMed  Google Scholar 

  13. M. Semler and H. Adametzová, J. Electroanal. Chem., 1974, 56, 155.

    Article  CAS  Google Scholar 

  14. K. Kimura, T. Maeda, H. Tamura, and T. Shono, J. Electroanal. Chem., 1979, 95, 91.

    Article  CAS  Google Scholar 

  15. M. Yamauchi, A. Jyo, and N. Ishibashi, Anal. Chim. Acta, 1982, 136, 399.

    Article  CAS  Google Scholar 

  16. E. Lindner, K. Tóth, M. Horváth, E. Pungor, B. Ágai, I. Bitter, L. Tökeand, and Z. Hell, Fresenius' J. Anal. Chem., 1985, 322, 157.

    Article  CAS  Google Scholar 

  17. M. Dror, E. A. Bergs, and R. K. Rhodes, Sens. Actuators, 1987, 11, 23.

    Article  CAS  Google Scholar 

  18. A. S. Attyae, G. D. Christian, R. Y. X. Wen, and R. A. Bartsch, Electroanalysis, 1992, 4, 51.

    Article  Google Scholar 

  19. D. Lee and J. D. R. Thomas, Talanta, 1994, 41, 901.

    Article  CAS  PubMed  Google Scholar 

  20. A. Bratov, N. Abramova, J. Munoz, C. Dominigguez, S. Alegret, and J. Bartroli, Anal. Chem., 1995, 67, 3589.

    Article  CAS  Google Scholar 

  21. P. C. Hauser, D. W. L. Chiang, and G. A. Wright, Anal. Chim. Acta, 1995, 302, 241.

    Article  CAS  Google Scholar 

  22. K.-C. Oh, E. C. Kang, Y. L. Cho, K.-S. Jeong, E.-A. Yoo, and K.-J. Paeng, Anal. Sci., 1998, 4, 1009.

    Article  Google Scholar 

  23. S. Kim, H. Kim, K. H. Noh, S. H. Lee, S. K. Kim, and J. S. Kim, Talanta, 2003, 61, 709.

    Article  CAS  PubMed  Google Scholar 

  24. T. Katsu, Y Yokoyama, K. Ueda, K. Kohno, and T. Yamato, Anal. Sci., 2005, 21, 175.

    Article  CAS  PubMed  Google Scholar 

  25. M. Fibbioli, W. E. Morf, M. Badertscher, N. F. de Rooij, and E. Pretsch, Electroanalysis, 2000, 12, 1286.

    Article  CAS  Google Scholar 

  26. D. N. Reinhoudt, J. F. J. Engbersen, Z. Brzózka, H. H. van den Vlekkert, G. W. N. Honig, H. A. J. Holterman, and U. H. Verkerk, Anal. Chem., 1994, 66, 3618.

    Article  CAS  Google Scholar 

  27. N. V. Kolytcheva, O. M. Petrukhin, N. V. Filipieva, and H. Müller, Sens. Actuators, B, 1998, 48, 491.

    Article  CAS  Google Scholar 

  28. N. Hosaka, K. Tanaka, H. Otsuka, and A. Takahara, Compos. Interface, 2004, 11, 297.

    Article  CAS  Google Scholar 

  29. S. Y. Soong, R. E. Cohen, and M. C. Boyce, Polymer, 2007, 48, 1410.

    Article  CAS  Google Scholar 

  30. E. Pungor, K. Toth, and H. Pall, Pure Appl. Chem., 1977, 51, 1913.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Hattori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattori, T., Masaki, Y., Atsumi, K. et al. Real-Time Two-Dimensional Imaging of Potassium Ion Distribution Using an Ion Semiconductor Sensor with Charged Coupled Device Technology. ANAL. SCI. 26, 1039–1045 (2010). https://doi.org/10.2116/analsci.26.1039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.26.1039

Navigation