Skip to main content
Log in

Topographic Trace-Elemental Analysis in the Brain of Wistar Rats by X-ray Microfluorescence with Synchrotron Radiation

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Knowledge about the spatial distribution and the local concentration of trace elements in tissues is of great importance, since trace elements are involved in many biological functions of living organisms. However, there are few methods available to measure the spatial (two (three)-dimensional) elemental distribution in animal brain. X-ray microfluorescence with synchrotron radiation is a multielemental mapping technique, which was used in this work to determine the topographic of iron, zinc and copper in coronal sections of female Wistar rats of different ages. Young (14 days old) and middle-aged (20 months old) rats (n = 8) were analyzed. The measurements were carried out at the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). Two-dimensional scanning was performed in order to study the tendency of elemental concentration variation. The acquisition time for each pixel was 10 s/step and the step size was 300 mm/step in both directions. It was observed that the iron distribution was more conspicuous in the cortical area, thalamus and bellow the thalamus. On the other hand, the zinc distribution was more pronounced in the hippocampus. The iron, copper and zinc levels increased with advancing age. Therefore, this study reinforces the idea that these elements are involved in the chemical mechanisms of the brain that induce some neurological diseases, since they are also present in high levels in specific areas of the brain, such as the hippocampus and the substantia nigra of patients with these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bohic, A. Simionovici, R. Ortega, D. Heymann, C. Schroer, and A. Snigirev, Nucl. Instrum. Methods Phys. Res., Sect. B, 2001, 181, 728.

    Article  CAS  Google Scholar 

  2. T. Takahashi, S. Hatashita, and Y. Taba, J. Neurosci. Methods, 2000, 100, 53.

    Article  CAS  PubMed  Google Scholar 

  3. C. Sergeant, M. H. Vesvres, G. Devès, and F. Guillou, Nucl. Instrum. Methods Phys. Res., Sect. B, 2005, 231, 234.

    Article  CAS  Google Scholar 

  4. R. A Floyd and K. Hensley, Neurobiol. Aging, 2002, 23, 795.

    Article  CAS  PubMed  Google Scholar 

  5. G. Hebbrecht, W. Maenhaut, and J. De Reuck, Nucl. Instrum. Methods Phys. Res., Sect. B, 1999, 150, 208.

    Article  CAS  Google Scholar 

  6. T. G. M. H. Dickhoff, M. Prins, and L. J. B. Hoffman, Nucl. Instrum. Methods Phys. Res., Sect. B, 1982, 197, 129.

    Article  Google Scholar 

  7. M. Lankosz, M. Szcerbowska-Boruchowska, J. Chwiej, J. Ostachowicz, A. Simionovici, and S. Bohic, Spectrochim. Acta, Part B, 2004, 59, 1517.

    Article  Google Scholar 

  8. F. Watt, T. Lee, P. S. P. Thong, and M. Tang, Nucl. Instrum. Methods Phys. Res., Sect. B, 1995, 104, 361.

    Article  CAS  Google Scholar 

  9. M. Szcerbowska-Boruchowska, M. Lankosz, and D. Ostachowicz, J. Phys. IV, 2003, 104, 325.

    Google Scholar 

  10. M. Szcerbowska-Boruchowska, M. Lankosz, and D. Ostachowicz, X-Ray Spectrom., 2004, 33, 3.

    Article  Google Scholar 

  11. R. Ortega, M. Deves, and M. Bonnin-Mosbah, Nucl. Instrum. Methods Phys. Res., Sect. B, 2001, 181, 485.

    Article  CAS  Google Scholar 

  12. W. M. Kwiatek, A. L. Hanson, and M. Paluszkiewicz, J. Alloys Compd., 2004, 362, 83.

    Article  CAS  Google Scholar 

  13. A. Ide-Ektessabi, T. Kawakami, and F. Watt, Nucl. Instrum. Methods Phys. Res., Sect. B, 2004, 213, 590.

    Article  CAS  Google Scholar 

  14. U. Lindh, Nucl. Instrum. Methods Phys. Res., Sect. B, 1995, 104, 285.

    Article  CAS  Google Scholar 

  15. Quantitative X-ray Analysis System (QXAS) software package, IAEA, Vienna.

  16. M. Prins, J. A. Van der Heide, and A. J. J. Boss, IEEE Trans. Nucl. Sci., 1983, 30, 1243.

    Article  Google Scholar 

  17. A. Ektessabi, S. Yoshida, and K. Takada, X-Ray Spectrom., 1999, 28, 456.

    Article  CAS  Google Scholar 

  18. B. Singh, D. Dhawan, B. Chand, P. C. Mangal, and P. N. Trehan, Appl. Radiat. Isot., 1995, 46, 59.

    Article  CAS  PubMed  Google Scholar 

  19. J. M. Graham, M. N. J. Paley, R. A. Grünewald, N. Hoqqard, and P. D. Griffiths, Brain, 2000, 123, 2423.

    Article  PubMed  Google Scholar 

  20. E. Kienzl, L. Puchinger, K. Jellinger, H. Stachelberger, and R. F. Jameson, J. Neurol. Sci., 1995, 134, 69.

    Article  PubMed  Google Scholar 

  21. W. R. Markesbery, W. D. Ehmann, M. Alauddin, and T. J. M. Hossain, Neurobiol. Aging, 1984, 5, 19.

    Article  CAS  PubMed  Google Scholar 

  22. C. W. Levenson, Physiol. Behav., 2005, 86, 399.

    Article  CAS  PubMed  Google Scholar 

  23. H. Shim and Z. L. Harris, J. Nutr., 2003, 133, 1527.

    Article  Google Scholar 

  24. R. Palm, G. Wahlström, and G. Hallmans, Lab. Anim., 1990, 240.

  25. C. L. Keen and L. S. Hurley, Mech. Aging Dev., 1980, 13, 161.

    Article  CAS  PubMed  Google Scholar 

  26. T. Tarohda, M. Yamamoto, and R. Amano, Anal. Bioanal. Chem., 2004, 380, 240.

    Article  CAS  PubMed  Google Scholar 

  27. E. Mocchegiani, M. Muzzioli, C. Cipriano, and R. Giacconi, Mech. Aging Dev., 1998, 106, 183.

    Article  CAS  PubMed  Google Scholar 

  28. D. W. Choi, M. Yokoyama, and J. Koh, Neuroscience, 1988, 24, 67.

    Article  CAS  PubMed  Google Scholar 

  29. A. Takeda, J. Sawashita, and S. Okada, Brain Res., 1995, 695, 53.

    Article  CAS  PubMed  Google Scholar 

  30. C. J. Frederickson, W. I. Manton, M. H. Frederickson, G. A. Howell, and M. A. Mallory, Brain Res., 1982, 246, 338.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Lopes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serpa, R.F.B., de JESUS, E.F.O., Anjos, M.J. et al. Topographic Trace-Elemental Analysis in the Brain of Wistar Rats by X-ray Microfluorescence with Synchrotron Radiation. ANAL. SCI. 24, 839–842 (2008). https://doi.org/10.2116/analsci.24.839

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.24.839

Navigation