Skip to main content
Log in

Solvation of Lithium Ion in N,N-Diethyl-N-methyl-N-(2-methoxyethyl)ammonium Bis(trifluoromethanesulfonyl)-amide Using Raman and Multinuclear NMR Spectroscopy

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The solvation structure of the Li(I) species in N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethane- sulfonyl)amide (DEMETFSA) was studied by measuring the Raman and multinuclear NMR spectra of DEMETFSA solutions containing LiTFSA of various concentrations (0.12–1.92 mol kg-1, [TFSA-]/[Li(I)] = 20.0–2.22). It was found from Raman spectra that an intense band due to the free TFSA- anion at around 741 cm-1 becomes weak, and a new band appears at around 747 cm-1 with an increase in the concentrations of LiTFSA, and that the pseudoisosbestic point is observed at around 744 cm-1 in the range of [TFSA-]/[Li(I)] = 20.0–5.00. From analyses of these Raman bands, the number of TFSA- anions bound to the Li+ ion was evaluated to be 1.85 ± 0.08, and hence, the Li(I) in DEMETFSA solutions was proposed to exist as [Li(TFSA)2]- in the range of [TFSA-]/[Li(I)] = 20.0–5.00. Furthermore, in the range of [TFSA-]/[Li(I)] = 2.86–2.22, the band observed at around 747 cm-1 became more strong, and the pseudoisosbestic point disappeared. From these phenomena, it seems that the Li(I) oligomer species are formed in the higher concentration region of LiTFSA. The 19F NMR signal of the TFSA- anion observed at 42.31 ppm in neat DEMETFSA was found to shift to a higher field linearly with an increase in the concentrations of LiTFSA ([LiTFSA] = 0.00–0.99 mol kg-1, [TFSA-]/[Li+] = 20.0–3.33), while in a higher concentration range ([LiTFSA] > 1.26 mol kg-1, [TFSA-]/[Li+] < 2.86), a slight deviation from linearity was observed. On the other hand, the 7Li NMR signal did not show an appreciable shift with increasing LiTFSA concentrations. These results support that the Li(I) species in DEMETFSA solutions exist as [Li(TFSA)2]- and the Li(I) oligomer species in the low and high concentration regions of LiTFSA, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Earle and K. R. Seddon, Pure Appl. Chem., 2000, 72, 1391.

    Article  CAS  Google Scholar 

  2. R. D. Rogers, K. R. Seddon, and S. Volkov, “Green Industrial Applications of Ionic Liquids”, 2000, Kluwer Academic Publishers.

    Google Scholar 

  3. P. Wasserscheid and T. Welton, “Ionic Liquids in Synthesis”, 2003, Wiley-VCH.

    Google Scholar 

  4. T. Welton, Chem. Rev., 1999, 99, 2071.

    Article  CAS  Google Scholar 

  5. P. Wasserscheid and W. Keim, Angew. Chem., Int. Ed., 2000, 39, 3772.

    Article  CAS  Google Scholar 

  6. H. Zhao, S. Xia, and P. Ma, J. Chem. Technol. Biotechnol., 2005, 80, 1089.

    Article  CAS  Google Scholar 

  7. S. Pandey, Anal. Chim. Acta, 2006, 556, 38.

    Article  CAS  Google Scholar 

  8. S. Chun, S. V. Dzyuba, and R. A. Bartsch, Anal. Chem., 2001, 73, 3737.

    Article  CAS  Google Scholar 

  9. H. Luo, S. Dai, and P. V. Bonnesen, Anal. Chem., 2004, 76, 2773.

    Article  CAS  Google Scholar 

  10. T. Sato, G. Masuda, and K. Takagi, Electrochim. Acta, 2004, 49, 3603.

    Article  CAS  Google Scholar 

  11. H. Sakaebe and H. Matsumoto, Electrochem. Commun., 2003, 5, 594.

    Article  CAS  Google Scholar 

  12. H. Sakaebe, H. Matsumoto, and K. Tatsumi, J. Power Sources, 2005, 146, 693.

    Article  CAS  Google Scholar 

  13. S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, N. Kihira, M. Watanabe, and N. Terada, J. Phys. Chem. B, 2006, 110, 10228.

    Article  CAS  Google Scholar 

  14. T. Sato, T. Maruo, S. Marukane, and K. Takagi, J. Power Sources, 2004, 138, 253.

    Article  CAS  Google Scholar 

  15. S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, Y. Mita, A. Usami, N. Terada, and M. Watanabe, Electrochem. Solid-State Lett., 2005, 8, A577.

    Article  CAS  Google Scholar 

  16. S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, M. Watanabe, and N. Terada, Chem. Commun., 2006, 544.

    Google Scholar 

  17. Y. Wang, K. Zaghib, A. Guerfi, F. F. C. Bazito, R. M. Torresi, and J. R. Gahn, Electrochim. Acta, 2007, 52, 6346.

    Article  CAS  Google Scholar 

  18. H. Sakaebe, H. Matsumoto, and K. Tatsumi, Electrochim. Acta, 2007, 53, 1048.

    Article  CAS  Google Scholar 

  19. H. Matsumoto, M. Yanagida, K. Tanimoto, M. Nomura, Y. Kitagawa, and Y. Miyazaki, Chem. Lett., 2000, 922.

    Google Scholar 

  20. H. Matsumoto, M. Yanagida, K. Tanimoto, T. Kojima, Y. Tamiya, and Y. Miyazaki, Molten Salts XII, Proceedings of the Electrochemical Society, ed. P. C. Trulove, H. C. De Long, G. R. Stafford, and S. Deki, 2000, Vol. 99–41, Pennington, NJ, 186.

  21. H. Matsumoto, H. Sakaebe, and K. Tatsumi, J. Power Sources, 2005, 146, 45.

    Article  CAS  Google Scholar 

  22. K. Hayamizu, S. Tsuzuki, S. Seki, Y. Ohno, H. Miyashiro, and Y. Kobayashi, J. Phys. Chem. B, 2008, 112, 1189.

    Article  CAS  Google Scholar 

  23. M. J. Monteiro, F. F. C. Bazito, L. J. A. Siqueira, M. C. C. Ribeiro, and R. M. Torresi, J. Phys. Chem. B, 2008, 112, 2102.

    Article  CAS  Google Scholar 

  24. T. Umecky, Y. Saito, Y. Okumura, S. Maeda, and T. Sakai, J. Phys. Chem. B, 2008, 112, 3357.

    Article  CAS  Google Scholar 

  25. M. Castriota, T. Caruso, R. G. Agostino, E. Cazzanelli, W. A. Henderson, and S. Passerini, J. Phys. Chem. A, 2005, 109, 92.

    Article  CAS  Google Scholar 

  26. J. Lassegues, J. Grondin, and D. Talaga, Phys. Chem. Chem. Phys., 2006, 8, 5629.

    Article  CAS  Google Scholar 

  27. L. J. Hardwick, M. Holzapfel, A. Wokaun, and P. Novak, J. Raman Spectrosc., 2007, 38, 110.

    Article  CAS  Google Scholar 

  28. I. Nicotera, C. Oliviero, W. A. Henderson, G. B. Appetecchi, and S. Passerini, J. Phys. Chem. B, 2005, 109, 22814.

    Article  CAS  Google Scholar 

  29. W. A. Henderson and S. Passerini, Chem. Mater., 2004, 16, 2881.

    Article  CAS  Google Scholar 

  30. K. Matsumoto, R. Hagiwara, and O. Tamada, Solid State Sci., 2006, 8, 1103.

    Article  CAS  Google Scholar 

  31. O. Borodin, G. D. Smith, and W. Henderson, J. Phys. Chem. B, 2006, 110, 16879.

    Article  CAS  Google Scholar 

  32. Y. Umebayashi, T. Mitsugi, S. Fukuda, T. Fujimori, K. Fujii, R. Kanzaki, M. Takeuchi, and S. Ishiguro, J. Phys. Chem. B, 2007, 111, 13028.

    Article  CAS  Google Scholar 

  33. T. Maruo, T. Sato, G. Masuda, and R. Nozu, International Patent, 2000, WO02076924.

    Google Scholar 

  34. K. Fujii, T. Fujimori, T. Takamuku, R. Kanzaki, Y. Umebayashi, and S. Isiguro, J. Phys. Chem. B, 2006, 110, 8179.

    Article  CAS  Google Scholar 

  35. D. Brouillette, D. E. Irish, N. J. Taylor, G. Perron, M. Odziemkowski, and J. E. Desnoyers, Phys. Chem. Chem. Phys., 2002, 4, 6063.

    Article  CAS  Google Scholar 

  36. I. Rey, P. Johansson, J. Lindgren, J. C. Lassegues, J. Grondin, and L. Servant, J. Phys. Chem. A, 1998, 102, 3249.

    Article  CAS  Google Scholar 

  37. A. Bakker, S. Gejji, J. Lindgren, and K. Hermansson, Polymer, 1995, 36, 4371.

    Article  CAS  Google Scholar 

  38. S. Tsuzuki, K. Hayamizu, S. Seki, Y. Ohno, Y. Kobayashi, and H. Miyashiro, J. Phys. Chem. B, 2008, 112, 9914.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhisa Ikeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirai, A., Fujii, K., Seki, S. et al. Solvation of Lithium Ion in N,N-Diethyl-N-methyl-N-(2-methoxyethyl)ammonium Bis(trifluoromethanesulfonyl)-amide Using Raman and Multinuclear NMR Spectroscopy. ANAL. SCI. 24, 1291–1296 (2008). https://doi.org/10.2116/analsci.24.1291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.24.1291

Navigation