Skip to main content
Log in

Low-Potential Nicotinamide Adenine Dinucleotide Detection at a Glassy Carbon Electrode Modified with Toluidine Blue O Functionalized Multiwall Carbon Nanotubes

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The toluidine blue O (TBO) functionalized multiwall carbon nanotubes (MWNTs) nanomaterials (TBO-MWNTs) were prepared by assembling TBO onto the surface of a MWNTs modified glassy carbon (GC) electrode. Also TBO-MWNTs modified GC electrodes exhibiting a strong and stable electrocatalytic response toward-nicotinamide adenine dinucleotide (NADH) were described. Compared with a bare GC electrode, the TBO-MWNTs modified GC electrodes could decrease the oxidization overpotential of NADH by 730 mV, with a peak current at 0.0 V, since there was a positively synergistic electrocatalytic effect between the MWNTs and TBO toward NADH. Furthermore, the TBO- MWNTs modified GC electrodes had perfect performances, such as a low detection limit (down to 0.5 pM), being very stable (the current diminutions is lower than 6% in a period over 35 min), a fast response (within 3 s), and a wide linear range (from 2.0 pM to 3.5 mM). Such an ability of TBO-MWNTs to promote the NADH electron-transfer reaction suggests great promise for dehydrogenase-based amperometric biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ciszewski and G. Milczarek, Anal. Chem., 2000, 72, 3203.

    Article  CAS  Google Scholar 

  2. J. Moiroux and P. J. Elving, Anal. Chem., 1978, 50, 1056.

    Article  CAS  Google Scholar 

  3. H. Jaegfeldt, J. Electroanal. Chem., 1980, 110, 295.

    Article  CAS  Google Scholar 

  4. J. Wang, L. Angnes, and T. Martinez, Bioelectrochem. Bioenerg., 1992, 29, 215.

    Article  CAS  Google Scholar 

  5. J. Wang, R. P. Deo, P. Poulin, and M. Mangey, J. Am. Chem. Soc., 2003, 125, 14706.

    Article  CAS  Google Scholar 

  6. M. Zhang, A. Smith, and W. Gorski, Anal. Chem., 2004, 76, 5045.

    Article  CAS  Google Scholar 

  7. M. Musameh, J. Wang, A. Merkoci, and Y. Lin, Electrochem. Commun., 2002, 4, 743.

    Article  CAS  Google Scholar 

  8. J. Wang and M. Musameh, Anal. Chem., 2003, 75, 2075.

    Article  CAS  Google Scholar 

  9. R. R. Moore, C. E. Banks, and R. G. Compton, Anal. Chem., 2004, 76, 2677.

    Article  CAS  Google Scholar 

  10. J. Chen, J. Bao, C. Cai, and T. Lu, Anal. Chim. Acta, 2004, 516, 29.

    Article  CAS  Google Scholar 

  11. L. Gorton and E. Dominguez, Rev. Mol. Biotechnol., 2002, 82, 371.

    Article  CAS  Google Scholar 

  12. Q. J. Chi and S. J. Dong, J. Mol. Catal. A: Chem., 1996, 105, 193.

    Article  CAS  Google Scholar 

  13. C. X. Cai and K.-H. Xue, J. Electroanal. Chem., 1997, 427, 147.

    Article  CAS  Google Scholar 

  14. Q. Gao, W. Wang, Y. Ma, and X. Yang, Talanta, 2004, 62, 477.

    Article  CAS  Google Scholar 

  15. M. Ohtani, S. Kuwabata, and H. Yoneyama, J. Electroanal. Chem., 1997, 422, 45.

    Article  CAS  Google Scholar 

  16. M. G. Zhang and W. Gorski, Anal. Chem., 2005, 77, 3960.

    Article  CAS  Google Scholar 

  17. M. G. Zhang and W. Gorski, J. Am. Chem. Soc., 2005, 127, 2058.

    Article  CAS  Google Scholar 

  18. S. H. Qin, D. Q. Qin, W. T. Ford, Y. J. Zhang, and N. A. Kotov, Chem. Mater., 2005, 17, 2131.

    Article  CAS  Google Scholar 

  19. X. D. Lou, R. Daussin, S. Cuenot, A. S. Duwez, C. Pagnoulle, C. Detrembleur, C. Bailly, and R. Jerome, Chem. Mater., 2004, 16, 4005.

    Article  CAS  Google Scholar 

  20. P. He and M. Bayachou, Langmuir, 2005, 21, 6086.

    Article  CAS  Google Scholar 

  21. R. J. Chen, Y. Zhang, D. Wang, and H. J. Dai, J. Am. Chem. Soc., 2001, 123, 3838.

    Article  CAS  Google Scholar 

  22. L. Han, W. Wu, F. L. Kirk, J. Luo, M. M. Maye, N. N. Kariuki, Y. Lin, C. Wang, and C. J. Zhong, Langmuir, 2004, 20, 6019.

    Article  CAS  Google Scholar 

  23. E. Bekyarova, A. Hashimoto, M. Yudasaka, Y. Hattori, K. Murata, H. Kanoh, D. Kasuya, S. Iijima, and K. Kaneko, J. Phys. Chem. B, 2005, 109, 3711.

    Article  CAS  Google Scholar 

  24. J. Zhang, J.-K. Lee, Y. Wu, and R. W. Murray, Nano Lett., 2003, 3, 403.

    Article  CAS  Google Scholar 

  25. Y. M. Yan, M. N. Zhang, K. P. Gong, L. Su, Z. Guo, and L. Mao, Chem. Mater., 2005, 17, 3457.

    Article  CAS  Google Scholar 

  26. H. J. Dai, Acc. Chem. Res., 2002, 35, 1035.

    Article  CAS  Google Scholar 

  27. A. Star, J. Stoddart, D. Steuerman, M. Diehl, and A. Boukai, Angew. Chem., Int. Ed., 2001, 40, 1721.

    Article  CAS  Google Scholar 

  28. F. M. Tian and G. Y. Zhu, Sens. Actuators, B, 2004, 97, 103.

    Article  CAS  Google Scholar 

  29. C. X. Cai and K. H. Xue, Talanta, 1998, 47, 1107.

    Article  CAS  Google Scholar 

  30. A. Kuznetsova, I. Popova, T. John, Yates Jr., M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, and J. G. Chen, J. Am. Chem. Soc., 2001, 123, 10699.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanzhi Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, J., Wei, W., Zhai, X. et al. Low-Potential Nicotinamide Adenine Dinucleotide Detection at a Glassy Carbon Electrode Modified with Toluidine Blue O Functionalized Multiwall Carbon Nanotubes. ANAL. SCI. 22, 399–403 (2006). https://doi.org/10.2116/analsci.22.399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.22.399

Navigation