Skip to main content
Log in

Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In the current work a uniform morphological Ag nanoparticles (Ag NPs) were prepared with ascorbic acid as a reducing agent and citrate as a stabilizer. The surface of Ag NPs modified by crystal violet (CV) and potassium iodide (KI) was used as an aggregation agent to obtain CV modified Ag NPs (CV-Ag NPs) probes for detecting mercury ions. The mercury ions could be reduced to mercury molecules by citrate, and then deposited on the surface of Ag NPs, leading to the separation of CV molecules from the surface of Ag NPs. Therefore, the SERS signal intensity of CV decreased with the increase of the Hg2+ concentration and the concentration of Hg2+ was in the range of 1 × 10–11 to 1 × 10–5 M. Taking the change of the characteristic peak intensity of CV at 913 cm–1 as a reference, the SERS spectrum intensity of CV has a linear relationship with the Hg2+ concentration. The equation is y =–333.55x + 1343.05, where the linear correlation coefficient is R2 = 0.980, and the recovery rate is between 84.20 to 105.60%. Finally, the CV-Ag NPs probe was used to quickly detect soluble mercury in cinnabar. Compared with the conventional large-scale instrument detection method, this simple and fast method, can be applied for rapid detection of soluble mercury, and has a certain significance for concerning the research of mineral medicine processing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zhou, L. Wang, X. Sun, X. Yang, C. Chen, Q. Wang, and X. Yang, J. Ethnopharmacol., 2011, 135, 110.

    Article  CAS  PubMed  Google Scholar 

  2. S. Cao, J. Xia, L. Li, H. Chen, X. Yang, and S. Ji, Lishizhen Med. Mater. Med. Res., 2016, 27, 1110.

    Google Scholar 

  3. X. Zhou, K. Zeng, Q. Wang, X. Yang, and K. Wang, J. Ethnopharmacol., 2010, 131, 196.

    Article  CAS  PubMed  Google Scholar 

  4. P. Jiang, Y. Li, G. Liu, G. Yang, L. Lagos, Y. Yin, B. Gu, G. Jiang, and Y. Cai, J. Hazard. Mater., 2016, 317, 466.

    Article  CAS  PubMed  Google Scholar 

  5. J. S. Waples, K. L. Nagy, G. R. Aiken, and J. N. Ryan, Geochim. Cosmochim. Acta, 2005, 69, 1575.

    Article  CAS  Google Scholar 

  6. R. J. Huang, Z. X. Zhuang, Y. Tai, R. F. Huang, X. R. Wang, and F. S. C. Lee, Talanta, 2006, 68, 728.

    Article  CAS  PubMed  Google Scholar 

  7. Q. T. Jiang, L. Zeng, J. Ma, L. N. Peng, W. L. Li, Y. Ding, and J. Li, Chin. J. Anal. Chem., 2016, 44, 979.

    Article  CAS  Google Scholar 

  8. Q. Wu, X. He, S. J. Zhou, F. G. Shi, and Y. F. Lu, Toxicol. In Vitro, 2020, 63, 7.

    Article  Google Scholar 

  9. J. Langer, D. Jimenez De Aberasturi, J. Aizpurua, R. A. Alvarez-Puebla, B. Auguie, J. J. Baumberg, G. C. Bazan, S. E. J. Bell, A. Boisen, A. G. Brolo, J. Choo, D. Cialla-May, V. Deckert, L. Fabris, K. Faulds, F. J. Garcia De Abajo, R. Goodacre, D. Graham, A. J. Haes, C. L. Haynes, C. Huck, T. Itoh, M. Kall, J. Kneipp, N. A. Kotov, H. Kuang, E. C. Le Ru, H. K. Lee, J. F. Li, X. Y. Ling, S. A. Maier, T. Mayerhofer, M. Moskovits, K. Murakoshi, J. M. Nam, S. Nie, Y. Ozaki, I. Pastoriza-Santos, J. Perez-Juste, J. Popp, A. Pucci, S. Reich, B. Ren, G. C. Schatz, T. Shegai, S. Schlucker, L. L. Tay, K. G. Thomas, Z. Q. Tian, R. P. Van Duyne, T. Vo-Dinh, Y. Wang, K. A. Willets, C. Xu, H. Xu, Y. Xu, Y. S. Yamamoto, B. Zhao, and L. M. Liz-Marzan, ACS Nano, 2020, 14, 28.

    Article  CAS  PubMed  Google Scholar 

  10. A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. Mcanally, C. T. Chapman, A. I. Henry, G. C. Schatz, and R. P. Van Duyne, Chem. Rev., 2017, 117, 7583.

    Article  CAS  PubMed  Google Scholar 

  11. N. Li, S. Han, C. Zhang, S. Lin, X. Y. Sha, and W. Hasi, Anal. Sci., 2020, 36, 935.

    Article  CAS  PubMed  Google Scholar 

  12. S. Lin, X. Lin, S. Han, H. Zhao, W. Hasi, and L. Wang, Nanotechnology, 2019, 30, 215601.

    Article  CAS  PubMed  Google Scholar 

  13. X. Lin, G. Fang, Y. Liu, Y. He, L. Wang, and B. Dong, J. Phys. Chem. Lett., 2020, 11, 3573.

    Article  CAS  PubMed  Google Scholar 

  14. S. Y. Fu, X. Y. Guo, H. Wang, T. X. Yang, Y. Wen, and H. F. Yang, Sens. Actuators, B, 2014, 199, 108.

    Article  CAS  Google Scholar 

  15. W. Ren, C. Zhu, and E. Wang, Nanoscale, 2012, 4, 5902.

    Article  CAS  PubMed  Google Scholar 

  16. Y. Qi, J. Zhao, G.-J. Weng, J.-J. Li, X. Li, J. Zhu, and J.-W. Zhao, J. Mater. Chem. C, 2018, 6, 12283.

    Article  CAS  Google Scholar 

  17. K. Li, A. Liang, C. Jiang, F. Li, Q. Liu, and Z. Jiang, Talanta, 2012, 99, 890.

    Article  CAS  PubMed  Google Scholar 

  18. I. Ojea-Jimenez, X. Lopez, J. Arbiol, and V. Puntes, ACS Nano, 2012, 6, 2253.

    Article  CAS  PubMed  Google Scholar 

  19. Y. Q. Qin, X. H. Ji, J. Jing, H. Liu, H. L. Wu, and W. S. Yang, Colloids Surf. A, 2010, 372, 172.

    Article  CAS  Google Scholar 

  20. P. Pinkhasova, H. Chen, M. W. G. M. Verhoeven, S. Sukhishvili, and H. Du, RSC Adv., 2013, 3, 17954.

    Article  CAS  Google Scholar 

  21. S. Lin, X. Lin, S. Q. G. W. Han, L. He, H. Y. Zhao, J. Zhang, W. L. J. Hasi, and L. Wang, J. Alloys Compd., 2019, 805, 318.

    Article  CAS  Google Scholar 

  22. L. He, N. J. Kim, H. Li, Z. Hu, and M. Lin, J. Agric. Food Chem., 2008, 56, 9843.

    Article  CAS  PubMed  Google Scholar 

  23. S. Q. Han, X. Chen, C. Zhang, H. Zhao, S. Lin, Y. Zhang, and W. L. Hasi, Anal. Sci., 2019, 35, 1209.

    Article  CAS  PubMed  Google Scholar 

  24. C. Zhang, S. Q. Han, H. Zhao, S. Lin, and W. L. Hasi, Anal. Sci., 2018, 34, 1249.

    Article  CAS  PubMed  Google Scholar 

  25. L. Xie, J. Lu, T. Liu, G. Chen, G. Liu, B. Ren, and Z. Tian, J. Phys. Chem. Lett., 2020, 11, 1022.

    Article  CAS  PubMed  Google Scholar 

  26. C. Zhu, G. Meng, P. Zheng, Q. Huang, Z. Li, X. Hu, X. Wang, Z. Huang, F. Li, and N. Wu, Adv. Mater., 2016, 28, 4871.

    Article  CAS  PubMed  Google Scholar 

  27. T. Kulikova, E. Hiller, L. Jurkovic, L. Filova, P. Sottnik, and P. Lacina, Environ. Monit. Assess., 2019, 191, 263.

    Article  CAS  PubMed  Google Scholar 

  28. R. L. Frost, S. Bahfenne, and E. C. Keeffe, J. Raman Spectrosc., 2010, 41, 1779.

    Article  Google Scholar 

  29. X. Yuan, K. Li, Y. Zhang, Y. Miao, Y. Xiang, Y. Sha, M. Zhang, and K. Huang, Microchem. J., 2020, 155, 1.

    Google Scholar 

  30. L. F. Shi, D. F. Xue, H. G. Xu, H. Liu, and W. F. Teng, Spectrosc. Spectr. Anal., 2007, 27, 1036.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31871873 and 82160806).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siqingaowa Han or Wuliji Hasi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Han, S., Lin, S. et al. Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe. ANAL. SCI. 37, 1407–1412 (2021). https://doi.org/10.2116/analsci.21P047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21P047

Keywords

Navigation