Skip to main content
Log in

Preparation of a Clay-modified Carbon Paste Electrode Based on 2-Thiazoline-2-thiol-hexadecylammonium Sorption for the Sensitive Determination of Mercury

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A montmorillonite from Wyoming-USA was used to prepare an organo-clay complex, named 2-thiazoline-2-thiol-hexadecyltrimethylammonium-clay (TZT-HDTA-clay), for the purpose of the selective adsorption of the heavy metals ions and possible use as a chemically modified carbon paste electrode (CMCPE). Adsorption isotherms of Hg2+, Pb2+, Cd2+, Cu2+, and Zn2+ from aqueous solutions as a function of the pH were studied at 298 K. Conditions for quantitative retention and elution were established for each metal by batch and column methods. The organo-clay complex was very selective to Hg(II) in aqueous solution in which other metals and ions were also present. The accumulation voltammetry of Hg(II) was studied at a carbon paste electrode chemically modified with this material. The mercury response was evaluated with respect to the pH, electrode composition, preconcentration time, mercury concentration, “cleaning” solution, possible interferences and other variables. A carbon paste electrode modified by TZT-HDTA-clay showed two peaks: one cathodic peak at about 0.0 V and an anodic peak at 0.25 V, scanning the potential from–0.2 to 0.8 V (0.05 M KNO3vs. Ag/AgCl). The anodic peak at 0.25 V presents excellent selectivity for Hg(II) ions in the presence of foreign ions. The detection limit was estimated as 0.1 µg L−1. The precision of determination was satisfactory for the respective concentration level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Van Olphen, “An Introduction to Clay Colloid Chemistry”, 2nd ed., 1963, Wiley, New York.

    Google Scholar 

  2. B. K. G. Theng, “The Chemistry of Clay Organic Interactions”, 1974, Wiley, New York.

    Google Scholar 

  3. G. Lagaly, Clay Miner., 1981, 16, 1.

    Article  CAS  Google Scholar 

  4. R. Bongiovanni, M. Chiarle, and E. J. Pelizzetti, J. Dispersion Sci. Technol., 1993, 14, 255.

    Article  CAS  Google Scholar 

  5. T. R. Jones, Clay Miner., 1983, 18, 399.

    Article  CAS  Google Scholar 

  6. G. Lagaly, Chem. Int. ed. Engl., 1976, 15, 575.

    Article  Google Scholar 

  7. R. M. Barrer, Clays Clay Miner., 1989, 37, 385.

    Article  CAS  Google Scholar 

  8. J. F. Lee, M. M. Mortland, C. T. Chiou, D. E. Kile, and S. A. Boyd, Clays Clay Miner., 1990, 38, 113.

    Article  CAS  Google Scholar 

  9. K. R. Srinivasan and H. S. Fogler, Clays Clay Miner., 1990, 38, 287.

    Article  CAS  Google Scholar 

  10. K. R. Srinivasan and H. S. Fogler, Clays Clay Miner., 1990, 38, 277.

    Article  CAS  Google Scholar 

  11. N. L. Dias Filho, Y. Gushikem, and W. L. Polito, Anal. Chim. Acta, 1995, 306, 167.

    Article  CAS  Google Scholar 

  12. D. Shan, C. Mousty, S. Cosnier, and S. L. Mu, J. Electroanal. Chem., 2002, 537, 103.

    Article  CAS  Google Scholar 

  13. J. M. Zen and P. J. Chen, Electroanalysis, 1998, 10, 12.

    Article  CAS  Google Scholar 

  14. Z. Navratilova and P. Kula, Electroanalysis, 2003, 15, 837.

    Article  CAS  Google Scholar 

  15. I. K. Tonle, E. Ngameni, and A. Walcarius, Electrochim. Acta, 2004, 49, 3435.

    Article  CAS  Google Scholar 

  16. R. F. Bergstrom, D. R. Kay, and J. G. Wagner, J. Chromatogr, 1981, 222, 445.

    Article  CAS  Google Scholar 

  17. M. E. Johll, D. G. Williams, and D. C. Johnson, Electroanalysis, 1997, 9, 1397.

    Article  CAS  Google Scholar 

  18. P. W. Faguy, W. L. Ma, J. A. Lowe, W. P. Pan, and T. Brown, J. Mater. Chem., 1994, 4, 771.

    Article  CAS  Google Scholar 

  19. C. J. Song and G. Villemure, J. Electroanal. Chem., 1999, 46, 143.

    Article  Google Scholar 

  20. P. Falaras and F. Lezou, J. Electroanal. Chem., 1998, 455, 169.

    Article  CAS  Google Scholar 

  21. D. Petridis, P. D. Kaviratna, and T. J. Pinnavaia, J. Electroanal. Chem., 1996, 410, 93.

    Article  Google Scholar 

  22. M. Morita, J. Yoshinaga, and J. S. Edmonds, Pure Appl. Chem., 1998, 70, 1585.

    Article  CAS  Google Scholar 

  23. F. J. P. Branches, T. B. Erickson, S. E. Aks, and D. O. Hryhorczuk, J. Toxicol-Clin. Toxicol., 1993, 31, 295.

    Article  CAS  Google Scholar 

  24. Y. Uryu, O. Malm, I. Thornton, I. Payne, and D. Cleary, Conservation Biology, 2001, 15, 438.

    Article  Google Scholar 

  25. C. M. Wang and H. L. Li, Electroanalysis, 1998, 10, 44.

    Article  Google Scholar 

  26. I. G. Svegl, M. Kolar, B. Ogorevc, and B. Pihlar, Fresenius J. Anal. Chem., 1998, 361, 358.

    Article  CAS  Google Scholar 

  27. Z. Navratilova and P. Kula, Electroanalysis, 2003, 15, 837.

    Article  CAS  Google Scholar 

  28. P. Kula, Z. Navratilova, P. Kulova, and M. Kotoucek, Anal. Chim. Acta, 1999, 385, 91.

    Article  CAS  Google Scholar 

  29. J. Labuda and V. Plaskon, Anal. Chim. Acta, 1990, 228, 259.

    Article  CAS  Google Scholar 

  30. Z. Navratilova and P. Kula, Sci. Pap. Univ. Pardubice, Ser. A, 1998, 3, 195.

    Google Scholar 

  31. F. Gessner, C. Schmitt, and M. G. Neumann, Langmuir, 1994, 10, 3749.

    Article  CAS  Google Scholar 

  32. N. L. Dias Filho and D. R. Do Carmo, in “Encyclopedia of Surface and Colloid Science”, ed. M. Dekker, 2004, New York, 1.

  33. N. L. Dias Filho, in “Encyclopedia of Surface and Colloid Science”, ed. M. Dekker, 2002, New York, 199.

  34. N. L. Dias Filho, Polyhedron, 1999, 18, 2241.

    Article  CAS  Google Scholar 

  35. N. L. Dias Filho, Mikrochim. Acta, 1999, 130, 233.

    Article  CAS  Google Scholar 

  36. N. L. Dias Filho and Y. Gushikem, Sep. Sci. Technol., 1997, 32, 2535.

    Article  Google Scholar 

  37. R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533.

    Article  CAS  Google Scholar 

  38. Z. Navratilova and P. Kula, Electroanalysis, 1992, 4, 683.

    Article  CAS  Google Scholar 

  39. X. Cai, K. Kalcher, W. Diewald, C. Neuhold, and R. J. Magee, Fresenius J. Anal. Chem., 1993, 345, 25.

    Article  CAS  Google Scholar 

  40. R. Agraz, M. T. Sevilla, and L. Hernandez, J. Electroanal. Chem., 1995, 390, 7.

    Article  Google Scholar 

  41. P. Ugo, L. Sperni, and L. M. Moretto, Electroanalysis, 1997, 9, 1153.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Newton L. Dias Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filho, N.L.D., do Carmo, D.R., Gessner, F. et al. Preparation of a Clay-modified Carbon Paste Electrode Based on 2-Thiazoline-2-thiol-hexadecylammonium Sorption for the Sensitive Determination of Mercury. ANAL. SCI. 21, 1309–1316 (2005). https://doi.org/10.2116/analsci.21.1309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21.1309

Navigation