Skip to main content
Log in

Molecularly Imprinted Polymer Based GCE for Ultra-sensitive Voltammetric and Potentiometric Bio Sensing of Topiramate

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Topiramate (TOP) drug is classified as one of the most commonly used human drugs for anticonvulsants and antiepileptic, so its rapid detection and monitoring is of great importance. In this work, new potentiometric (MIP/PVC/GCE) and voltammetric (MIP/GO/GCE) sensors for the selective and sensitive determination of TOP were fabricated based on the molecularly imprinted polymer (MIP) approach. The MIP was synthesized by the polymerization of acrylamide and methacrylic acid as monomers, in the presence of TOP as a template and ethylene glycol dimethacrylate as a cross-linker. The obtained products were characterized by FT-IR, SEM, BET, and EDX. The MIP was embedded in a plasticized polyvinyl chloride membrane and used as a potentiometric sensor for sensing TOP. Alternatively, the synthesized MIP and graphene oxide (GO) were deposited layer-by-layer on the surface of GCE to construct a voltammetric sensor for studying the electrochemical behavior of the drug. Under optimized conditions, both electrochemical sensors showed excellent linear relationships between the concentration of TOP and the response signals of MIP/GO/GCE or MIP/PVC/ GCE sensors in the 2.7 × 10−10 to 4.9 × 10−3 M and 1 × 10−9 to 3.4 × 10−3 M ranges, respectively. Also, both sensors have good reproducibility and high stability for up to 15 days for a voltammetric sensor and 28 days for a potentiometric sensor. The utility of these sensors was checked for TOP analysis in different real samples with good recovery (92.8 – 99%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Ozcelik, A. Serdaroglu, A. Bideci, E. Arhan, S. Soysal, E. Demir, and K. Gucuyener, Pediatr. Neurol., 2014, 57, 2.

    Google Scholar 

  2. A. A. Ishikawa, R. M. da Silva, M. S. F. Santos, E. T. da Costa, A. C. Sakamoto, E. Carrilho, C. M.. de Gaitani, and C. D. Garcia, Electrophoresis, 2018, 39, 5.

    Article  Google Scholar 

  3. R. Z. Hahn, M. V. Antunes, P. Costa Arnhold, N. B. Andriguetti, S. G. Verza, and R. Linden, J. Chromatogr. B, 2017, 1046, 1.

    Article  Google Scholar 

  4. G. Bahrami, S. Mirzaeei, B. Mohammadi, and A. Kiani, J. Chromatogr. B, 2005, 822, 5.

    Article  Google Scholar 

  5. E. C. Pinto, C. Xu, L. M. Cabral, D. W. Armstrong, and V. P.. de Sousa, Rapid Commun. Mass Spectrom., 2019, 33, 5.

    Article  Google Scholar 

  6. G. Bahrami, S. Mirzaeei, and A. Kiani, J. Chromatogr. B, 2004, 813, 1.

    Article  Google Scholar 

  7. C. Cifuentes, S. Mennickent, and M. D. Diego, J. Pharm. Biomed. Anal., 2016, 5, 7.

    Google Scholar 

  8. R. Mandrioli, A. Musenga, E. Kenndler, M. De Donno, M. Amore, and M. A. Raggi, J. Pharm. Biomed. Anal., 2010, 53, 5.

    Article  Google Scholar 

  9. P. Yanez-Sedeno, S. Campuzano, and J. M. Pingarron, Anal. Chim. Acta, 2017, 960, 3.

    Article  Google Scholar 

  10. N. S. Abdalla, M. A. Youssef, H. Algarni, N. S. Awwad, and A. H. Kamel, Molecules, 2019, 24, 4.

    Article  Google Scholar 

  11. M. E. Khalifa and A. B. Abdallah, Biosens. Bioelectron., 2019, 2, 1.

    Google Scholar 

  12. T. Alizadeh, F. Atashi, and M. R. Ganjali, Talanta, 2019, 194, 1

    Google Scholar 

  13. T. Alizadeh, N. Karimian, and M. R. Ganjali, Ionics, 2019, 25, 3.

    Article  Google Scholar 

  14. A. Paşahan, N. Ayhan, İ. Özcan, S. Titretir Duran, and S. Köytepe, Polym. Plast. Technol. Eng., 2018, 58, 10.

    Google Scholar 

  15. Q. Zhao, L. Bao, Q. Luo, M. Zhang, Y. Lin, D. Pang, and Z. Zhang, Biosens. Bioelectron., 2009, 24, 10.

    CAS  Google Scholar 

  16. M. Nodehi, M. Baghayeri, R. Ansari, and H. Veisi, Mater. Chem. Phys., 2020, 244, 5.

    Article  Google Scholar 

  17. W. Zhang, L. Zong, G. Geng, Y. Li, and Y. Zhang, Sens. Actuators, B, 2018, 257, 7.

    Google Scholar 

  18. K. Bharathi, S. P. Kumar, P. S. Prasad, and V. Narayanan, Mater. Today, 2018, 5, 2.

    Article  Google Scholar 

  19. S. Duzmen, A. K. Baytak, and M. Aslanoglu, Mater. Chem. Phys., 2020, 252, 5.

    Article  Google Scholar 

  20. M. E. Khalifa, I. M. M. Kenawy, Y. G. Abou El-Reash, and A. B. Abdallah, J. Environ. Chem. Eng., 2017, 5, 4.

    Article  Google Scholar 

  21. E. Mohseni, M. R. Yaftian, H. Shayani-jam, A. Zamani, and F. Piri, Synth. Met., 2020, 259, 4.

    Article  Google Scholar 

  22. Y. Saylan, S. Akgonullu, H. Yavuz, S. Unal, and A. Denizli, Sensors, 2019, 19, 6.

    Article  Google Scholar 

  23. M. A. Beluomini, J. L. da Silva, A. C.. de Sä, E. Buffon, T. C. Pereira, and N. R. Stradiotto, J. Electroanal. Chem., 2019, 840, 4.

    Article  Google Scholar 

  24. A. Kubiak and M. Biesaga, Crit. Rev. Anal. Chem., 2019, 215, 4.

    Google Scholar 

  25. L. J. Kou, R. N. Liang, X. W. Wang, Y. Chen, and W. Qin, Anal. Bioanal. Chem., 2013, 405, 5.

    Article  Google Scholar 

  26. M. A. Abu-Dalo, N. S. Nassory, N. I. Abdulla, and I. R. Al-Mheidat, J. Electroanal. Chem., 2015, 751, 3.

    Article  Google Scholar 

  27. Jamil I. Al-Mustafa, M. A. Abu-Dalo, and N. S. Nassory, Int. J. Electrochem. Sci., 2017, 153, 1.

    Google Scholar 

  28. M. S. Tehrani, M. T. Vardini, P. Abroomand Azar, and S. W. Husain, J. Iran. Chem., 2010, 7, 3.

    Google Scholar 

  29. T. T. Reo Shoji and I. Kubo, Anal. Chem., 2003, 124, 18.

    Google Scholar 

  30. T. Alizadeh, M. Zare, M. R. Ganjali, P. Norouzi, and B. Tavana, Biosens. Bioelectron., 2010, 25, 7.

    Article  Google Scholar 

  31. N. Atar, M. L. Yola, and T. Eren, Appl. Surf. Sci., 2016, 362, 7.

    Article  Google Scholar 

  32. M. L. Yola, T. Eren, and N. Atar, J. Electrochem. Soc., 2016, 163, 13.

    Google Scholar 

  33. A. J. S. Ahammad, M. K. Alam, T. Islam, M. M. Hasan, R. Karim, A. N. Anju, and M. N. I. Mozumder, Electrochim. Acta, 2020, 349, 7.

    Article  Google Scholar 

  34. S. Wu, K. Li, X. Dai, Z. Zhang, F. Ding, and S. Li, Microchem. J., 2020, 155, 5.

    Article  Google Scholar 

  35. S. Ulubay and Z. Dursun, Talanta, 2010, 80, 3.

    Article  Google Scholar 

  36. S. Duzmen, A. K. Baytak, and M. Aslanoglu, Mater. Chem. Phys., 2020, 252, 6.

    Article  Google Scholar 

  37. P. Prado, L. F. Moreira, E. Buffon, and N. R. Stradiotto, Talanta, 2020, 208, 1.

    Google Scholar 

  38. Y. Poo-arporn, S. Pakapongpan, N. Chanlek, and R. P. Poo-arporn, Sens. Actuators, B, 2019, 284, 164.

    Article  CAS  Google Scholar 

  39. F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, and H. Karimi-Maleh, Compos. B. Eng., 2019, 172, 4.

    Article  Google Scholar 

  40. L. P. Lingamdinne, J. R. Koduru, and R. R. Karri, J. Environ. Manage., 2019, 237, 6.

    Google Scholar 

  41. T. H. Tu, P. T. N. Cam, L. V. T. Huy, M. T. Phong, H. M. Nam, and N. H. Hieu, Mater. Lett., 2019, 238, 1.

    Article  Google Scholar 

  42. J. Dai, J. Pan, L. Xu, X. Li, Z. Zhou, R. Zhang, and Y. Yan, J. Hazard. Mater., 2012, 205, 12.

    Google Scholar 

  43. J. Kuhn, G. Aylaz, E. Sari, M. Marco, H. H. P. Yiu, and M. Duman, J. Hazard. Mater., 2020, 387, 5.

    Article  Google Scholar 

  44. Z. Ghasempour, M. Alizadeh Khaled-Abad, M. R. Vardast, M. Rezazad Bari, and E. Moghaddas Kia, Polym. Bull., 2018, 76, 7.

    Google Scholar 

  45. S. Peper and C. Gonczy, Int. J. Electrochem. Sci., 2011, 11, 8.

    Google Scholar 

  46. L. Ning, G. Qil, and Q. Wei, Chin. J. Anal. Chem., 2012, 40, 3.

    Article  Google Scholar 

  47. T. S. Anirudhan and S. Alexander, Appl. Surf. Sci., 2014, 303, 1.

    Article  Google Scholar 

  48. N. P. Shetti, S. J. Malode, R. S. Malladi, S. L. Nargund, S. S. Shukla, and T. M. Aminabhavi, Microchem. J., 2019, 146, 3.

    Article  Google Scholar 

  49. Y. Wu, P. Deng, Y. Tian, Z. Ding, G. Li, J. Liu, Z. Zuberi, and Q. He, Bioelectrochemistry, 2020, 131, 7.

    Article  Google Scholar 

  50. A. Wojnarowicz, P. S. Sharma, M. Sosnowska, W. Lisowski, T. Huynh, M. Pszona, P. Borowicz, F. D’Souza, and W. Kutner, J. Mater. Chem. B, 2016, 1156, 4.

    Google Scholar 

  51. R. S. Fernandes, M. Dinc, I. M. Raimundo, and B. Mizaikoff, Micropor. Mesopor. Mat., 2017, 1877, 17.

    Google Scholar 

  52. L. Chen, Y. K. Lee, Y. Manmana, K. S. Tay, V. S. Lee, and N. Abd Rahman, e-Polymers., 2015, 15, 3.

    Article  CAS  Google Scholar 

  53. M. R. Ali, M. S. Bacchu, M. Daizy, C. Tarafder, M. S. Hossain, M. M. Rahman, and M. Z. H. Khan, Anal. Chim. Acta, 2020, 1121, 11.

    Article  CAS  PubMed  Google Scholar 

  54. R. H. Al-Ammari, A. A. Ganash, and M. A. Salam, Synth. Met., 2019, 254, 18.

    Article  Google Scholar 

  55. J. G. Pacheco, P. Rebelo, F. Cagide, L. M. Goncalves, F. Borges, J. A. Rodrigues, and C. Delerue-Matos, Talanta, 2019, 194, 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Abdallah.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalifa, M.E., Ali, T.A. & Abdallah, A.B. Molecularly Imprinted Polymer Based GCE for Ultra-sensitive Voltammetric and Potentiometric Bio Sensing of Topiramate. ANAL. SCI. 37, 955–962 (2021). https://doi.org/10.2116/analsci.20P313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P313

Keywords

Navigation