Skip to main content
Log in

Photolithographically Constructed Single ZnO Nanowire Device and Its Ultraviolet Photoresponse

  • Notes
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A sparse ZnO nanowire array with aspect ratio of ca. 120 and growth rate of 1 μm/h was synthesized by controlling the density of seeds at the initial stage of nanowire growth. The spatially-separated nanowires were cut off from the growth substrate without breaking, and thus were useful in the construction of a single-nanowire device by photolithography. The device exhibited a linear current–voltage characteristic associated with ohmic contact between ZnO nanowire and electrodes. The device further demonstrated a reliable photoresponse with an IUV/Idark of ~100 to ultraviolet light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kalblein, H. Ryu, F. Ante, B. Fenk, K. Hahn, K. Kern, and H. Klauk, ACS Nano, 2014, 8, 6840.

    Article  PubMed  Google Scholar 

  2. J. Bao, M. A. Zimmler, and F. Capasso, Nano Lett., 2006, 6, 1719.

    Article  CAS  PubMed  Google Scholar 

  3. L. Zhang, Y. Wang, H. Wu, M. Hou, J. Wang, L. Zhang, C. Liao, S. Liu, and Y. Wang, Nanoscale, 2019, 11, 8319.

    Article  CAS  PubMed  Google Scholar 

  4. E. Danielson, V. Dhamodharan, A. Porkovich, P. Kumar, N. Jian, Z. Ziadi, P. Grammatikopoulos, V. A. Sontakke, Y. Yokobayashi, and M. Sowwan, Sci. Rep., 2019, 9, 17370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. Choi, K. Kim, H.-I Jung, and S. Y. Lee, Sens. Actuators, B, 2010, 148, 577.

    Article  CAS  Google Scholar 

  6. Y. Hu, J. Zhou, P.-H. Yeh, Z. Li, T.-Y. Wei, and Z. L. Wang, Adv. Mater., 2010, 22, 3327.

    Article  CAS  PubMed  Google Scholar 

  7. L. Oleg, C. Vasilii, P. Vasile, A. Mahdi, B. R. Beatriz, C. Lee, T. Ion, V. Bruno, P. Thierry, and A. Rainer, Sens. Actuators, B, 2016, 223, 893.

    Article  Google Scholar 

  8. A. Choi, K. Kim, H. Jung, and S. Y. Lee, Sens. Actuators, B, 2010, 148, 577.

    Article  CAS  Google Scholar 

  9. L. Hu, Q. Liao, Z. Xu, J. Yuan, Y. Ke, Y. Zhang, W. Zhang, G. P. Wang, S. Ruan, Y.-J. Zeng, and S.-T. Han, ACS Photon., 2019, 6, 886.

    Article  CAS  Google Scholar 

  10. T. Lim, J. Bong, E. M. Mills, S. Kim, and S. Ju, ACS Appl. Mater. Interfaces, 2015, 7, 16296.

    Article  CAS  PubMed  Google Scholar 

  11. J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, Nat. Mater., 2011, 10, 596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Xu and Z. L. Wang, Nano Res., 2011, 4, 1013.

    Article  CAS  Google Scholar 

  13. J. Qiu, X. Li, F. Zhuge, X. Gan, X. Gao, W. He, S.-J. Park, H.-K. Kim, and Y.-H. Hwang, Nanotechnology, 2011, 21, 195602.

    Article  Google Scholar 

  14. L.-Y. Chen, Y.-T. Yin, C.-H. Chen, and J.-W. Chiou, J. Phys. Chem. C, 2011, 115, 20913.

    Article  CAS  Google Scholar 

  15. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater., 2005, 4, 455.

    Article  CAS  PubMed  Google Scholar 

  16. C. Xu, P. Shin, L. Cao, and D. Gao, J. Phys. Chem. C, 2010, 114, 125.

    Article  CAS  Google Scholar 

  17. Q. Li, S.-M. Koo, C. A. Richter, M. D. Edelstein, J. E. Bonevich, J. J. Kopanski, J. S. Suehle, and E. M. Vogel, IEEE Trans. Nanotechnol., 2007, 6, 256.

    Article  Google Scholar 

  18. H. Zhou, H. Alves, D. M. Hofmann, W. Kriegseis, B. K. Meyer, G. Kaczmarczyk, and A. Hoffmann, Appl. Phys. Lett., 2002, 80, 210.

    Article  CAS  Google Scholar 

  19. F. Han, S. Yang, W. Jing, K. Jiang, Z. Jiang, H. Liu, and L. Li, Opt. Express, 2014, 22, 11437.

    Google Scholar 

  20. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, Angew. Chem., Int. Ed., 2003, 42, 3031.

    Article  CAS  Google Scholar 

  21. W. Geng, S. Kostcheev, C. Sartel, V. Sallet, M. Molinari, O. Simonetti, G. Lérondel, L. Giraudet, and C. Couteau, Phys. Status Solidi C, 2013, 10, 1292.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by PRESTO (JPMJPR151B, JPMJPR19H9), Japan Science and Technology Agency (JST), the JSPS Grant-in-Aid for Young Scientists (A) 17H04803, the JSPS Grant-in-Aid for Scientific Research (A) 16H02091, the JSPS Grant-in-Aid for Scientific Research (S) 18H05243, a research grant from the Murata Science Foundation, Advanced Technology Institute Research Grants 2019, Foundation of Public Interest of Tatematsu, the Nitto Foundation, and the Nanotechnology Platform Program (Molecule and Material Synthesis) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanli Liu, Takao Yasui or Yoshinobu Baba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Yasui, T., Nagashima, K. et al. Photolithographically Constructed Single ZnO Nanowire Device and Its Ultraviolet Photoresponse. ANAL. SCI. 36, 1125–1129 (2020). https://doi.org/10.2116/analsci.20N002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20N002

Keywords

Navigation