Skip to main content
Log in

Electrochemical Analysis of Coffee Extractions at Different Roasting Levels Using a Carbon Nanotube Electrode

  • Notes
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This study reports on the electrochemical analysis of coffee extractions at different roasting levels by using a carbon nanotube (CNT) electrode. The roasting levels, ranging from 1 (low) to 6 (high), were determined according to the roasting time after fixing the roasting temperature. Level 1 roasting resulted in light roasted beans and level 6 in dark roasted ones. Based on the roasting level, the concentration of chlorogenic acids, including 3-caffeoylquinic (3CQ), 4-caffeoylquinic (4CQ), and 5-caffeoylquinic (5CQ) acid, can be determined. Cyclic voltammetry (CV) experiments revealed that the reduction current at +0.27 V was proportional to the concentration of chlorogenic acids. Highperformance liquid chromatography (HPLC) revealed an inverse correlation between the roasting level and chlorogenic acid amount. The total amounts of chlorogenic acids in coffee extractions determined by HPLC were in agreement with those obtained by CV using the CNT electrode at roasting levels 1–5. At level 6, the amount of chlorogenic acids determined by the current peak was larger than that detected by HPLC. As a result, the chlorogenic acid amount was overestimated in the CV experiment at +0.27 V, indicating that electrochemically active materials were generated at level 6. The CV profile showed that the reduction peak at +0.10 V increased with an increase in roasting level. Thus, the peak intensity at +0.10 V can be used to evaluate the roasting level even if the concentration or dilution conditions are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-K. Moon, H. S. Yoo, and T. Shibamoto, J. Agric. Food Chem., 2009, 57, 5365.

    Article  CAS  PubMed  Google Scholar 

  2. A. Farah, T. D. Paulis, L. C. Trugo, and P. R. Martin, J. Agric. Food Chem., 2005, 53, 1505.

    Article  CAS  PubMed  Google Scholar 

  3. C. E. Mills, M. J. Oruna-Concha, D. S. Mottram, G. R. Gibson, and J. P. E. Spencer, Food Chem., 2013, 141, 3335.

    Article  CAS  PubMed  Google Scholar 

  4. D. Perrone, A. Farah, C. M. Donangelo, T. d. Paulis, and P. R. Martin, Food Chem., 2008, 106, 859.

    Article  CAS  Google Scholar 

  5. M. B. M. Ferraz, A. Farah, B. T. Iamanaka, D. Perrone, M. V. Copetti, V. X. Marques, A. A. Vitali, and M. H. Taniwaki, Food Control, 2010, 21, 872.

    Article  CAS  Google Scholar 

  6. J.-S. Jeon, H.-T. Kim, I.-H. Jeong, S.-R. Hong, M.-S. Oh, K.-H. Park, J.-H. Shim, and A. M. Abd El-Aty, J. Chromatogr., B, 2017, 1064, 115.

    Article  CAS  Google Scholar 

  7. S. Takahashi, R. Wada, H. Muguruma, and N. Osakabe, Food Anal. Methods, 2020, 13, 923.

    Article  Google Scholar 

  8. Y. Yoshida, Anal. Sci., 2018, 34, 257.

    Article  CAS  PubMed  Google Scholar 

  9. R. Chokkareddy, G. G. Redhi, and T. Karthick, Heliyon, 2019, 5, e01457.

    Article  PubMed  PubMed Central  Google Scholar 

  10. C. M. Ribeiro, E. M. Miguel, J. S. Silva, C. B. Silva, M. O. F. Goulart, L. T. Kubota, F. B. Gonzaga, W. J. R. Santos, and P. R. Lima, Talanta, 2016, 156, 119.

    Article  PubMed  Google Scholar 

  11. X. Ma, H. Yang, H. Xiong, X. Li, J. Gao, and Y. Gao, Sensors, 2016, 16, 1797.

    Article  PubMed  PubMed Central  Google Scholar 

  12. G. Ziyatdinova, I. Aytuganova, A. Nizamova, and H. Budnikov, Food Anal. Methods, 2013, 6, 1629.

    Article  Google Scholar 

  13. H. Muguruma, S. Murakami, S. Takahashi, N. Osakabe, H. Inoue, and T. Ohsawa, J. Agric. Food Chem., 2019, 67, 943.

    Article  CAS  PubMed  Google Scholar 

  14. S. Murakami, S. Takahashi, H. Muguruma, N. Osakabe, H. Inoue, and T. Ohsawa, Anal. Sci., 2019, 35, 529.

    Article  CAS  PubMed  Google Scholar 

  15. R. Wada, S. Takahashi, H. Muguruma, and N. Osakabe, Anal Sci., 2020, 36, 1113.

    Article  CAS  PubMed  Google Scholar 

  16. S. H. DuVall and R. L. McCreery, J. Am. Chem. Soc., 2000, 122, 6759.

    Article  CAS  Google Scholar 

  17. K.-J. Huang, L. Wang, Y.-J. Liu, T. Gan, Y.-M. Liu, L.-L. Wang, and Y. Fan, Electrochim. Acta, 2013, 107, 379.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Muguruma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, R., Takahashi, S., Muguruma, H. et al. Electrochemical Analysis of Coffee Extractions at Different Roasting Levels Using a Carbon Nanotube Electrode. ANAL. SCI. 37, 377–380 (2021). https://doi.org/10.2116/analsci.20N021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20N021

Keywords

Navigation