Skip to main content
Log in

Dynamic Behaviors of Molecular Assemblies at Liquid/Liquid Interfaces Studied by Time-Resolved Quasi-Elastic Laser Scattering Spectroscopy

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The dynamic behaviors of molecular assemblies at two immiscible liquid interfaces are intriguing topics in many fields of science and technology. However, it is generally difficult to investigate the dynamic behaviors of such molecular assemblies because of the buried nature of liquid/liquid interfaces. In the present paper, our recent investigations on dynamic behaviors of various molecular self-assemblies at liquid/liquid interfaces are reviewed. We monitored dynamic behaviors of the molecular assemblies by time-resolved quasi-elastic laser scattering (TR-QELS) and fluorescent spectroscopy. The former method allows us to monitor the change in interfacial tension with millisecond time-resolution. As molecular assemblies, bis(2-ethylhexyl)sulfosuccinate (AOT) microemulsion, phospholipid biomembrane models, and liposome–DNA complexes have all been studied, since they are relevant in material sciences and biological technologies. At liquid/liquid interfaces, these molecular assemblies showed characteristic behaviors. We review the finding of rebound response of the interfacial tension at the liquid/liquid interface induced by the adsorption of the AOT microemulsion. We monitored the hydrolysis reaction of phospholipid biomembrane models formed at oil/water interfaces, observing the different types of behavior of liposome–DNA complexes at biomembrane models with different kinds of phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6 References

  1. A. G. Volkov, D. W. Deamer, D. L. Tanelian, and V. S. Martin, “Liquid Interface in Chemistry and Biology”, 1998, John Wiley and Sons, Inc., New York.

    Google Scholar 

  2. F. Ravera, M. Ferrari, and L. Liggieri, Adv. Colloid Interface Sci., 2000, 88, 129.

    Article  CAS  PubMed  Google Scholar 

  3. I. Benjamin, Chem. Rev., 1996, 96, 1449.

    Article  CAS  PubMed  Google Scholar 

  4. G. J. Hanna and R. D. Noble, Chem. Rev., 1985, 85, 583.

    Article  CAS  Google Scholar 

  5. See, for example, D. Langevin (ed.), “Light Scattering by Liquid Surfaces and Complementary Techniques”, 1992, Marcel Dekker, Inc., New York, Part 1 and references therein.

    Google Scholar 

  6. R. H. Kathyl and U. Ingard, Phys. Rev. Lett., 1968, 20, 248.

    Article  Google Scholar 

  7. D. J. Langevin, J. Chem. Soc., Faraday Trans. 1, 1974, 40, 95.

    Article  Google Scholar 

  8. J. C. Earnshaw and R. C. McGivern, J. Phys. D, 1987, 20, 82.

    Article  CAS  Google Scholar 

  9. K. Sakai, P.-K. Choi, H. Tanaka, and K. Takagi, Rev. Sci. Instrum., 1991, 62, 1192.

    Article  CAS  Google Scholar 

  10. S. Takahashi, A. Harata, T. Kitamori, and T. Sawada, Bunseki Kagaku, 1991, 40, 761.

    Article  CAS  Google Scholar 

  11. S. Takahashi, A. Harata, T. Kitamori, and T. Sawada, Anal. Sci., 1994, 10, 305.

    Article  CAS  Google Scholar 

  12. Z. H. Zhang, I. Tsuyumoto, S. Takahashi, T. Kitamori, and T. Sawada, J. Phys. Chem. A, 1997, 101, 4163.

    Article  CAS  Google Scholar 

  13. Y. Uchiyama, I. Tsutumoto, T. Kitamori, and T. Sawada, Langmuir, 2000, 16, 6597.

    Article  CAS  Google Scholar 

  14. H. Yui, Y. Ikezoe, and T. Sawada, in “Interfacial Nanochemistry”, ed. H. Watarai, 2004, Chap. 3, Springer, New York.

  15. I. Tsuyumoto, N. Noguchi, T. Kitamori, and T. Sawada, J. Phys. Chem. B, 1998, 102, 2684.

    Article  CAS  Google Scholar 

  16. J. J. Silber, A. Biasutti, E. Abuin, and E. Lissi, Adv. Colloid Interface Sci., 1999, 82, 189.

    Article  CAS  Google Scholar 

  17. M. Hirai, R. Kawai-Hirai, M. Sanada, H. Iwase, and S. Mitsuya, J. Phys. Chem. B, 1999, 103, 9658.

    Article  CAS  Google Scholar 

  18. C. Chiang, Biotechnol. Techniques, 1999, 12, 453.

    Article  Google Scholar 

  19. H. H. Ingelsten, R. Bagwe, A. Palmqvist, M. Skoglundh, C. Svanberg, K. Holmberg, and D. O. Shah, J. Colloid Interface Sci., 2001, 241, 104.

    Article  CAS  PubMed  Google Scholar 

  20. M. Takahashi, H. Yui, Y. Ikezoe, and T. Sawada, Chem. Phys. Lett., 2004, 390, 104.

    Article  CAS  Google Scholar 

  21. B. Yang, H. Matsumura, and K. Furusawa, Colloids and Surfaces B: Biointerfaces, 1999, 14, 161.

    Article  CAS  Google Scholar 

  22. C. Yang and D. Li, Colloids and Surface A, 1996, 113, 51.

    Article  CAS  Google Scholar 

  23. See, for example, G. W. Robinson, R. J. Robbins, G. R. Fleming, J. M. Morris, A. E. W. Knight, and R. J. S. Morrison, J. Am. Chem. Soc., 1978, 8, 7145. and references therein.

    Article  Google Scholar 

  24. K. Bessho, T. Uchida, A. Yamauchi, T. Shioya, and N. Teramae, Chem. Phys. Lett., 1997, 264, 381.

    Article  CAS  Google Scholar 

  25. K. Tanaka, P. A. Manning, and H. Yu, Langmuir, 2000, 16, 2665.

    Article  CAS  Google Scholar 

  26. F. Gambinossi, M. Puggelli, and G. Gabrielli, Colloids and Surfaces B: Biointerfaces, 2002, 23, 273.

    Article  CAS  Google Scholar 

  27. W. H. Pitcher III, S. L. Keller, and W. H. Huestis, Biochim. Biophys. Acta, 2002, 1564, 107.

    Article  CAS  PubMed  Google Scholar 

  28. R. F. Irvine, Biochem. J., 1982, 204, 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. R. M. Burch, Mol. Neurobiol., 1989, 3, 155.

    Article  CAS  PubMed  Google Scholar 

  30. We regarded the duration of the lag phase as the period until the interfacial tension increased rapidly after PLA2 injection.

  31. Y. Cajal, M. A. Alsina, O. G. Berg, and M. K. Jain, Langmuir, 2000, 16, 252.

    Article  CAS  Google Scholar 

  32. D. L. Scott, S. P. White, Z. Otwinowski, W. Yuan, M. H. Gelp, and P. B. Sigler, Science, 1990, 250, 1541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O. G. Berg, B. Z. Yu, J. Rogers, and M. K. Jain, Biochemistry, 1991, 30, 7283.

    Article  CAS  PubMed  Google Scholar 

  34. B. Z. Yu, J. Rogers, G. R. Nicol, K. H. Theopold, K. Seshadri, S. Vishweshwara, and M. K. Jain, Biochemistry, 1998, 37, 12576.

    Article  CAS  PubMed  Google Scholar 

  35. D. L. Scott, S. P. White, Z. Otwinowski, W. Yuan, M. H. Gelb, and P. B. Sigler, Science, 1990, 250, 1541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O. G. Berg, B. Z. Yu, J. Rogers, and M. K. Jain, Biochemistry, 1991, 30, 7283.

    Article  CAS  PubMed  Google Scholar 

  37. T. Morisaku, H. Yui, M. Iwazumi, Y. Ikezoe, M. Fujinami, and T. Sawada, Anal. Chem., 2004, 76, 2314.

    Article  CAS  PubMed  Google Scholar 

  38. T. Morisaku, H. Yui, and T. Sawada, Anal. Sci., 2004, 20, 1605.

    Article  CAS  PubMed  Google Scholar 

  39. See, for example, C. Boulanger, C. D. Giorgio, J. Gaucheron, and P. Vierling, Bioconjug. Chem., 2004, 15, 901. and references therein.

    Article  CAS  PubMed  Google Scholar 

  40. Y. Uchiyama, H. Yui, and T. Sawada, Anal. Sci., in press.

  41. M. J. Stevens, J. H. Hoh, and T. B. Woolf, Phys. Rev. Lett., 2003, 91, 188102.

    Article  PubMed  CAS  Google Scholar 

  42. M. Goto, T. Ono, F. Nakashio, and T. A. Hatton, Biotech. Bioeng., 1997, 54, 26.

    Article  CAS  Google Scholar 

  43. S. Tsukahara et al., private communication, Department of Chemistry, School of Science, Hiroshima University, Japan, 2004.

  44. H. Yui, D. Sawada, S. Kamiya, T. Sawada, and T. Shimizu, Anal. Sci., 2004, 20, 1549.

    Article  CAS  PubMed  Google Scholar 

  45. T. Takahashi, H. Yui, and T. Sawada, J. Phys. Chem. B, 2002, 106, 2314.

    Article  CAS  Google Scholar 

  46. H. Yui, Y. Ikezoe, T. Takahashi, and T. Sawada, J. Phys. Chem. B, 2003, 107, 8433.

    Article  CAS  Google Scholar 

  47. Y. Ikezoe, S. Ishizaki, T. Takahashi, H. Yui, and T. Sawada, J. Colloid Interface Sci. A, 2004, 275, 298.

    Article  CAS  Google Scholar 

  48. Y. Ikezoe, S. Ishizaki, H. Yui, and T. Sawada, Anal. Sci., 2004, 20, 435.

    Article  CAS  PubMed  Google Scholar 

  49. M. Nakagawa, N. Sezaki, and T. Kakiuchi, J. Electroanal. Chem., 2001, 501, 260.

    Article  CAS  Google Scholar 

  50. S. Ishizaka, Y. Ueda, and N. Kitamura, Anal. Chem., 2004, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroharu Yui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yui, H., Ikezoe, Y. & Sawada, T. Dynamic Behaviors of Molecular Assemblies at Liquid/Liquid Interfaces Studied by Time-Resolved Quasi-Elastic Laser Scattering Spectroscopy. ANAL. SCI. 20, 1501–1507 (2004). https://doi.org/10.2116/analsci.20.1501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20.1501

Navigation