Skip to main content
Log in

Simultaneous Detection of Six Different Types of Pesticides by an Immunosensor Based on Surface Plasmon Resonance

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Six pesticides, azoxystrobin, boscalid, chlorfenapyr, imazalil, isoxathion, and nitenpyram, were simultaneously detected by using a surface plasmon resonance (SPR) immunosensor. The working ranges were 3.5 - 19 ng/mL for azoxystrobin, 4.5 - 50 ng/mL for boscalid, 2.5 - 25 ng/mL for chlorfenapyr, 5.5 - 50 ng/mL for imazalil, 3.5 - 50 ng/mL for isoxathion, and 8.5 - 110 ng/mL for nitenpyram. They showed adequate recovery results in tomato samples: 104 - 116% for azoxystrobin, 94 - 101% for boscalid, 90 - 112% for chlorfenapyr, 96 - 106% for imazalil, 107 - 119% for isoxathion, and 104 - 109% for nitenpyram. The correlation coefficient with liquid chromatography (HPLC or LC-MS/MS) using vegetable samples also agreed well: 0.91 - 0.99 as R2 without strong bias, except for nitenpyram for which the SPR immunosensor sensitivity was too low. The SPR immunosensor will have high applicability for pesticide residue analyses in vegetable samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Brent and D. W. Hollomon, “Fungicide Resistance in Crop Pathogens: How can It be managed?”, 2nd ed., 2007, Fungicide Resistance Action Committee, Brussels.

    Google Scholar 

  2. T. C. Sparks and R. Nauen, Pestic. Biochem. Physiol., 2015, 121, 122.

    Article  CAS  PubMed  Google Scholar 

  3. Y. Akiyama, N. Yoshioka, and M. Tsuji, J. AOAC Int., 2002, 85, 692.

    Article  CAS  PubMed  Google Scholar 

  4. Y. Akiyama, T. Matsuoka, N. Yoshioka, S. Akamatsu, and T. Mitsuhashi, J. Pestic. Sci., 2011, 36, 66.

    Article  CAS  Google Scholar 

  5. M. Kobayashi, K. Ohtsuka, Y. Tamura, S. Tomizawa, K. Kamijo, K. Iwakoshi, Y. Kageyama, T. Nagayama, and I. Takano, Shokuhin Eiseigaku Zasshi (in Japanese), 2011, 52, 121.

    Article  CAS  PubMed  Google Scholar 

  6. E. Ueno, H. Oshima, I. Saito, H. Matsumoto, Y. Yoshimura, and H. Nakazawa, J. AOAC Int., 2004, 87, 1003.

    Article  CAS  PubMed  Google Scholar 

  7. M. Okihashi, Y. Kitagawa, K. Akutsu, H. Obana, and Y. Tanaka, J. Pestic. Sci., 2005, 30, 368.

    Article  CAS  Google Scholar 

  8. S. Takatori, M. Okihashi, Y. Okamoto, Y. Kitagawa, S. Kakimoto, H. Murata, T. Sumimoto, and Y. Tanaka, J. AOAC Int., 2008, 91, 871.

    Article  CAS  PubMed  Google Scholar 

  9. A. Stachniuk and E. Fornal, Food Anal. Methods, 2016, 9, 1654.

    Article  Google Scholar 

  10. M. Kondo, K. Tsuzuki, H. Hamada, Y. Murakami-Yamaguchi, M. Uchigashima, M. Saka, E. Watanabe, S. Iwasa, H. Narita, and S. Miyake, J. Agric. Food Chem., 2012, 60, 904.

    Article  CAS  PubMed  Google Scholar 

  11. F. Okazaki, Y. Hirakawa, Y. Yamaguchi-Murakami, A. Harada, E. Watanabe, S. Iwasa, H. Narita, and S. Miyake, Food Hyg. Saf. Sci., 2014, 55, 65.

    Article  CAS  Google Scholar 

  12. Y. Hirakawa, T. Yamasaki, A. Harada, T. Ohtake, K. Adachi, S. Iwasa, H. Narita, and S. Miyake, J. Agric. Food Chem., 2015, 63, 8075.

    Article  CAS  PubMed  Google Scholar 

  13. S. Miyake, Y. Hirakawa, T. Yamasaki, E. Watanabe, A. Harada, K. Adachi, S. Iwasa, and H. Narita, J. Pestic. Sci., 2019, 44, 156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. E. Watanabe and S. Miyake, Food Chem., 2013, 136, 695.

    Article  CAS  PubMed  Google Scholar 

  15. T. Yamasaki, T. Inoue, Y. Hirakawa, S. Miyake, E. Ueno, and I. Saito, Food Hyg. Saf. Sci. (in Japanese), 2015, 56, 240.

    Article  CAS  Google Scholar 

  16. S. Miyake, Shokubutsuboeki (in Japanese), 2018, 72, 5.

    Google Scholar 

  17. E. Watanabe, T. Yamasaki, Y. Hirakawa, A. Harada, S. Iwasa, and S. Miyake, Anal. Methods, 2018, 10, 3162.

    Article  CAS  Google Scholar 

  18. E. Watanabe, Y. Hirakawa, T. Yamasaki, S. Iwasa, and S. Miyake, Anal. Lett., 2019, 53, 174.

    Article  Google Scholar 

  19. Y. Hirakawa, T. Yamasaki, A. Harada, S. Iwasa, H. Narita, and S. Miyake, Anal. Sci., 2018, 34, 533.

    Article  CAS  PubMed  Google Scholar 

  20. S. Ito, M. Hayashi, N. Omoda, M. Watanabe, and S. Watanabe, Japan Patent Application, 1999, 8317199.

    Google Scholar 

  21. M. Kawada, K. Morimune, M. Hayashi, A. Fujii, N. Omoda, and S. Watanabe, Japan Patent Application, 1997, 31177397.

    Google Scholar 

  22. S. Ito, M. Hayashi, S. Watanabe, A. Fujii, and N. Omoda, Japan Patent Application, 1997, 6568197.

    Google Scholar 

  23. J. M. Clough, C. R. F. Godfrey, J. R. Godwin, R. S. I. Joseph, and C. Spinks. Pestic. Outlook, 1996, 7, 16.

    CAS  Google Scholar 

  24. C. MacBean, “The Pesticide Manual, In: Boscalid”, 16th ed., 2012, British Crop Protection Council, Hampshire, 122.

    Google Scholar 

  25. C. MacBean, “The Pesticide Manual, In: Chlorfenapyr”, 16th ed., 2012, British Crop Protection Council, Hampshire, 176.

    Google Scholar 

  26. E. Laville, P. R. Herding, Y. Dagan, M. Rahat, and A. J. Kraght, Proc. Int. Soc. Citriculture, 1977, 1, 269.

    CAS  Google Scholar 

  27. N. Sampei, K. Tomita, H. Tsuji, T. Yanai, H. Oka, and T. Yamamoto, Ann. Rep. Sankyo Res. Lab., 1970, 22, 221.

    CAS  Google Scholar 

  28. I. Minamida, K. Iwanaga, T. Tabuchi, I. Aoki, T. Fusaka, H. Ishizuka, and T. Okauchi, J. Pestic. Sci. 1993, 18, 41.

    Article  Google Scholar 

  29. A. Akayama and I. Minamida, “Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor”, ed. I. Yamamoto and J. E. Kacida, 1999, Springer, Berlin, 127.

Download references

Acknowledgments

The authors express their appreciation to Ms. Miho Nobuchika and Ms. Kyoko Shimomura for their assistance. This study was partially supported by the Aichi Science and Technology Foundation, Japan, and by the Cabinet Office, Government of Japan, Cross-ministerial Strategic Innovation Promotion Program (SIP), "Technologies for Smart Bio-industry and Agriculture" (funding agency: Bio-oriented Technology Research Advancement Institution, NARO). S. Miyake was employee until March 2018 by HORIBA Ltd., which is the company that provided the MoAbs and sells the SPR imaging system used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Miyake.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyake, S., Hirakawa, Y., Yamasaki, T. et al. Simultaneous Detection of Six Different Types of Pesticides by an Immunosensor Based on Surface Plasmon Resonance. ANAL. SCI. 36, 335–340 (2020). https://doi.org/10.2116/analsci.19P333

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P333

Keywords

Navigation