Skip to main content
Log in

Evaluation of the Calibration Method for Accurate Analysis of Dissolved Silica by Continuous Flow Analysis

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

For accurately determining nutrients in seawater by continuous flow analysis (CFA), the characteristic of the calibration curve was examined in detail. Under absorbance below 0.8, the calibration curve and the bracketing methods showed more accurate results that the bias fell below 0.5%. The analytical results of dissolved silica in seawater from the nutrient maximum layer of the Pacific Ocean obtained by the proposed methods showed good agreement with those obtained by an ion exclusion chromatography postcolumn absorption spectrophotometry (IEC-postcolumn) and an ion exclusion chromatography isotope dilution ICP mass spectrometry (IEC-ID-ICP-MS). From the results, the analysis of nutrients in seawater could be accurately carried out by CFA with an expanded uncertainty of below 1% using both the calibration curve and the bracketing methods with an appropriate absorbance range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Knap, A. Michaels, A. Close, H. Ducklow, and A. Dickson, “Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements”, 1996, JGOFS Report No. 19, JGOFS, Woods Hole.

    Google Scholar 

  2. M. Aoyama, H. Ota, M. Kimura, T. Kitao, H. Mitsuda, A. Murata, and K. Sato, Anal. Sci., 2012, 28, 911.

    Article  CAS  PubMed  Google Scholar 

  3. B. C. Reynolds, M. Frank, and A. N. Halliday, Earth Planet Sci. Lett., 2006, 244, 431.

    Article  CAS  Google Scholar 

  4. Certificates for NMIJ CRM 7601-a, 7602-a and 7603-a, National Metrology Institute of Japan, Tsukuba. https://www.nmij.jp/english/service/C/CRM_Catalog_(JE)_2018-2019.pdf.

  5. M. Aoyama {etet al.}, “IOCCP-JAMSTEC 2018 Inter-laboratory Calibration Exercise of a Certified Reference Material for Nutrients in Seawater”, 2018, IOCCP Report No. 1/2018, Japan Agency for Marine-Earth Science and Technology, Yokosuka, 9.

    Google Scholar 

  6. C. L. Sabine, R. M. Key, K. M. Johnson, F. J. Millero, A. Poisson, J. L. Sarmiento, D. W. R. Wallace, and C. D. Winn, Global Biogeochem. Cycles, 1999, 13, 179.

    Article  CAS  Google Scholar 

  7. K. Lee, S. D. Choi, G. H. Park, R. Wanninkhof, T. H. Peng, R. M. Key, C. L. Sabine, R. A. Feely, J. L. Bullister, F. J. Millero, and A. Kozyr, Global Biogeochem. Cycles, 2003, 17, 1116.

    Google Scholar 

  8. S. E. Mikaloff-Fletcher, N. Gruber, A. R. Jacobson, S. C. Doney, S. Dutkiewicz, M. Gerber, M. Follows, F. Joos, K. Lindsay, D. Menemenlis, A. Mouchet, S. A. Muller, and J. L. Sarmiento, Global Biogeochem. Cycles, 2006, 20, GB2002.

    Article  Google Scholar 

  9. C. Cheong, N. Nonose, T. Miura, and A. Hioki, Accred. Qual. Assur., 2014, 19, 31.

    Article  CAS  Google Scholar 

  10. ISO 13395:1996, “Water Quality—Determination of Nitrite Nitrogen and Nitrate Nitrogen and the Sum of Both by Flow Analysis (Cfa and Fia) and Spectrometric Detection”, 1996, International Organization for Standardization, Geneva.

    Google Scholar 

  11. ISO 11732:2005, “Water Quality—Determination of Ammonium Nitrogen—Method by Flow Analysis (CFA and FIA) and Spectrometric Detection”, 2005, International Organization for Standardization, Geneva.

    Google Scholar 

  12. ISO 15681-2:2018, “Water Quality—Determination of Orthophosphate and Total Phosphorus Contents by Flow Analysis (FIA and CFA)—Part 2: Method by Continuous Flow Analysis (CFA)”, 2018, International Organization for Standardization, Geneva.

    Google Scholar 

  13. I. Claramunt and L. Perez, Accred. Qual. Assur., 2014, 19, 205.

    Article  CAS  Google Scholar 

  14. T. Kodama, T. Ichikawa, K. Hidaka, and K. Furuya, J. Oceanogr., 2015, 71, 65.

    Article  CAS  Google Scholar 

  15. E. V. Dafner, Limnol. Oceanogr.: Methods, 2015, 13, 511.

    Article  Google Scholar 

  16. S. Ramaswami, H. Gulyas, J. Behrendt, and R. Otterpohl, Int. J. Environ. Anal. Chem., 2017, 97, 56.

    Article  CAS  Google Scholar 

  17. C. Cheong, Y. Yamauchi, and T. Miura, Anal. Sci., 2018, 34, 477.

    Article  CAS  PubMed  Google Scholar 

  18. K. Bakker, J. Ooijen, E. Weerlee, and E. Epping, “Comparability of Nutrients in the World's Ocean”, ed. M. Aoyama, A. G. Dickson, D. J. Hydes, A. Murata, J. R. Oh, P. Roose, and E. M. S. Woodward, 2010, Mother Tank, Tsukuba, 127.

  19. M. Aoyama {etet al.}, “Technical Reports ofthe Meteorological Research Institute No. 60, 2008 Inter-Laboratory Comparison Study of a Reference Material for Nutrients in Seawater”, 2010, Meteorological Research Institute, Tsukuba.

    Google Scholar 

  20. A. Hioki, A. Kokubun, and M. Kubota, Analyst, 1994, 119, 1879.

    Article  CAS  Google Scholar 

  21. N. Nonose, C. Cheong, Y. Ishizawa, T. Miura, and A. Hioki, Anal. Chim. Acta, 2014, 840, 10.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Nozaki, Bull. Soc. Sea Water Sci. Jpn. (in Japanese), 1997, 51, 302.

    Google Scholar 

  23. K. Grasshoff, Deep-Sea Res., 1964, 11, 597.

    CAS  Google Scholar 

  24. R. Ramachandran and P. K. Gupta, Anal. Chim. Acta, 1985, 172, 307.

    Article  CAS  Google Scholar 

  25. T. Kawano and H. Uchida, “WHP P10 Revisit Data Book”, 2007, Japan Agency for Marine-Earth Science and Technology, Yokosuka, 47–48.

    Google Scholar 

  26. P. Griess, Chem. Ber., 1879, 12, 426.

    Article  Google Scholar 

  27. I. C. Huygen, Anal. Chem., 1970, 42, 407.

    Article  CAS  PubMed  Google Scholar 

  28. Z. J. Zhang, J. C. Fischer, and B. P. Ortner, Int. J. Environ. Anal. Chem., 2000, 76, 99.

    Article  CAS  Google Scholar 

  29. C. Kato and A. Hioki, Bunseki Kagaku, 2009, 58, 723.

    Article  CAS  Google Scholar 

  30. G. H. Ayres, Anal. Chem., 1949, 21, 652.

    Article  CAS  Google Scholar 

  31. ISO Guide35:2017, “Reference Materials—Guidance for Characterization and Assessment of Homogeneity and Stability”, 2017, International Organization for Standardization, Geneva.

    Google Scholar 

  32. J. N. Miller, Analyst, 1991, 116, 3.

    Article  CAS  Google Scholar 

  33. J. O. D. Beer, T. R. D. Beer, and L. Goeyens, Anal. Chim. Acta, 2007, 584, 57.

    Article  PubMed  Google Scholar 

  34. M. J. T. Milton and T. J. Quinn, Metrologia, 2001, 38, 289.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikako Cheong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheong, C., Sakaguchi, A., Sueki, K. et al. Evaluation of the Calibration Method for Accurate Analysis of Dissolved Silica by Continuous Flow Analysis. ANAL. SCI. 36, 247–251 (2020). https://doi.org/10.2116/analsci.19P291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P291

Keywords

Navigation