Skip to main content
Log in

Characterization of Myoglobin Adsorption into Mesoporous Silica Pores by Differential Scanning Calorimetry

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Adsorption of protein molecules into the pores of a porous material is an important process for chromatographic separation of proteins and synthesis of nanoscale biocatalyst systems; however, there are barriers to developing a method for analyzing the process quantitatively. The purpose of this study is to examine the applicability of differential scanning calorimetry (DSC) for quantitative analysis of protein adsorption into silica mesopores. For this purpose myoglobin, a globular protein (diameter: 35.2 Å) was selected, and its adsorption onto mesoporous silica powders with uniform pore diameters (pore diameters: 39 and 64 Å) was measured by adsorption assay and DSC experiments. Our results confirmed that the adsorption of myoglobin into the silica mesopores induced significant changes in the positions and areas of freezing/melting peaks of the pore water. The decrease in heat of fusion of the pore water after myoglobin adsorption could be utilized to quantify the amount of myoglobin inside the silica mesopores. The advantages of DSC include its applicability to small wet mesoporous silica samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. C. de Neuville, A. Tarafder, and M. Morbidelli, J. Chromatogr. A, 2013, 1298, 26.

    Article  Google Scholar 

  2. K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, and J. P. Hill, Bull. Chem. Soc. Jpn., 2012, 85, 1.

    Article  CAS  Google Scholar 

  3. T. Itoh, A. Yamaguchi, T. Kyotani, T. Hanaoka, and F. Mizukami, Adv. Porous Mater., 2016, 4, 157.

    Article  Google Scholar 

  4. T. Itoh, R. Ishii, T. Ebina, T. Hanaoka, Y. Fukushima, and F. Mizukami, Bioconjugate Chem., 2006, 17, 236.

    Article  CAS  Google Scholar 

  5. D. M. Schlipf, S. E. Rankin, and B. L. Knutson, ACS Appl. Mater. Interfaces, 2013, 5, 10111.

    Article  CAS  PubMed  Google Scholar 

  6. A. Yamaguchi, F. Uejo, T. Yoda, T. Yamashita, T. Uchida, Y. Tanamura, and N. Teramae, Nat. Mater., 2004, 3, 337.

    Article  CAS  PubMed  Google Scholar 

  7. A. Yamaguchi and N. Teramae, Anal. Sci., 2008, 24, 25.

    Article  CAS  PubMed  Google Scholar 

  8. H. Arafune, K. Hotta, T. Itoh, N. Teramae, and A. Yamaguchi, Anal. Sci., 2017, 33, 473.

    Article  CAS  PubMed  Google Scholar 

  9. K. Ishikiriyama, M. Todoki, and K. Motomura, J. Colloid Interface Sci., 1995, 171, 92.

    Article  CAS  Google Scholar 

  10. S. Kittaka, S. Ishimaru, M. Kuranishi, T. Matsuda, and T. Yamaguchi, Phys. Chem. Chem. Phys., 2006, 8, 3223.

    Article  CAS  PubMed  Google Scholar 

  11. S. Jähnert, F. V. Chávez, G. E. Schaumann, A. Schreiber, M. Schönhoff, and G. H. Findenegg, Phys. Chem. Chem. Phys., 2008, 10, 6039.

    Article  PubMed  Google Scholar 

  12. A. Yamaguchi, M. Namekawa, T. Itoh, and N. Teramae, Anal. Sci., 2012, 28, 1065.

    Article  CAS  PubMed  Google Scholar 

  13. J. Kijima, Y. Shibuya, K. Katayama, T. Itoh, H. Iwase, Y. Fukushima, M. Kubo, and A. Yamaguchi, J. Phys. Chem. C, 2018, 122, 15567.

    Article  CAS  Google Scholar 

  14. Y. Shibuya, T. Itoh, S. Matsuura, and A. Yamaguchi, Anal. Sci., 2015, 31, 1069.

    Article  CAS  PubMed  Google Scholar 

  15. A. Galarneau, H. Cambon, F. Di Renzo, and F. Fajula, Langmuir, 2001, 17, 8328.

    Article  CAS  Google Scholar 

  16. J. Meissner, A. Prause, and G. H. Findenegg, J. Phys. Chem. Lett., 2016, 7, 1816.

    Article  CAS  PubMed  Google Scholar 

  17. D. Liu, Y. Zhang, C.-C. Chen, C.-Y. Mou, P. H. Poole, and S.-H. Chen, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 9570.

    Article  CAS  PubMed Central  Google Scholar 

  18. W. Doster, A. Bachleitner, R. Dunau, M. Hiebl, and E. Lüscher, Biophys. J., 1986, 50, 213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. M. Dubinin, Pure Appl. Chem., 1989, 61, 1841.

    Article  CAS  Google Scholar 

  20. F. Stoeckli, M. V. López-Ramón, and C. Moreno-Castilla, Langmuir, 2001, 17, 3301.

    Article  CAS  Google Scholar 

  21. M. A. Smith, M. G. Ilasi, and A. Zoelle, J. Phys. Chem. C, 2013, 117, 17493.

    Article  CAS  Google Scholar 

  22. K. Ito, K. Yoshida, K. Ujimoto, and T. Yamaguchi, Anal. Sci., 2013, 29, 353.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Nos. JP16H04160 and 17K19022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, A., Taki, K., Kijima, J. et al. Characterization of Myoglobin Adsorption into Mesoporous Silica Pores by Differential Scanning Calorimetry. ANAL. SCI. 34, 1393–1399 (2018). https://doi.org/10.2116/analsci.18P371

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P371

Keywords

Navigation