Skip to main content
Log in

Roles of Microbial Activity and Anthraquinone-2,7-disulfonate as a Model of Humic Substances in Leaching of Iron from Hematite into Seawater

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Fertilization with a mixture of steelmaking slag and compost can affect the supply of dissolved iron used to restore seaweed beds, however, the mechanisms of iron elution from the fertilizer are not well understood. In the present study, the microorganism was isolated from Fe-fertilizer incubated in coastal seawater for 6 months, and was identified as Exiguobacterium oxidotolerans by 16S rDNA sequencing. The iron elutability of the bacteria was proved based on the increasing of dissolved iron by incubation with Fe2O3 (hematite) under a seawater-like condition. The value of ORP was changed by inoculated of the bacteria from ca. 0 to ca. -400 mV, which is anticipated concerning to reduction of Fe. The concentration of eluted iron was largely depended on those of organic acids produced by bacteria. From the results, it was proved that E. oxidotolerans is capable of Fe reductive eluting of iron from Fe2O3 into seawater. Anthraquinone-2,7- disulfonate (AQDS), which can play as an electron acceptor/donor between microbe and insoluble Fe2O3 particles, enhanced the effect of iron bio-leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Matsunaga, T. Kawaguchi, Y. Suzuki, and G. Nigi, J. Exp. Mar. Biol. Ecol., 1999, 241, 193.

    Article  Google Scholar 

  2. T. Motomura and Y. Sakai, Jpn. J. Phycol., 1984, 32, 209.

    CAS  Google Scholar 

  3. K. Suzuki, K. Kuma, I. Kudo, and K. Matsunaga, Phycologia, 1995, 34, 201.

    Article  Google Scholar 

  4. H. Iwai, M. Fukushima, T. Motomura, T. Kato, and C. Kosugi, J. Appl. Phycol., 2015, 27, 1583.

    Article  CAS  Google Scholar 

  5. M. Boye, C. M. G. Van der Berg, J. T. M. de Jong, H. Leach, P. Croot, and H. J. W. de Baar, Deep Sea Res. Part I Oceanogr. Res. Pap., 2001, 48, 1477.

    Article  CAS  Google Scholar 

  6. D. Fujita, Fisheries Engineering, 2002, 39, 41.

    Google Scholar 

  7. A. L. Rose and T. D. Waite, Geochim. Cosmochim. Acta, 2006, 70, 3869.

    Article  CAS  Google Scholar 

  8. M. Yamamoto, M. Fukushima, E. Kiso, T. Kato, M. Shibuya, S. Horiya, A. Nishida, K. Otsuka, and T. Komai, J. Chem. Eng. Jpn., 2010, 43, 627.

    Article  CAS  Google Scholar 

  9. M. Yamamoto, A. Nishida, K. Otsuka, T. Komai, and M. Fukushima, Bioresource Technol., 2010, 101, 4456.

    Article  CAS  Google Scholar 

  10. N. Fujisawa, M. Fukushima, M. Yamamoto, H. Iwai, T. Komai, Y. Kawabe and D. Liu, J. Anal. Appl. Pyrolysis, 2012, 95, 126.

    Article  CAS  Google Scholar 

  11. H. Iwai, Y. Takasaki, and M. Fukushima, Anal. Sci., 2018, 34, 465.

    Article  CAS  PubMed  Google Scholar 

  12. K. H. Nealson and D. Saffarini, Annu. Rev. Microbiol., 1994, 48, 311.

    Article  CAS  PubMed  Google Scholar 

  13. L. Castro, C. Garcia-Balboa, F. Gonzalez, A. Ballester, M. L. Blazquez, and J. A. Munoz, Hydrometallurgy, 2013, 131-132, 29.

    Article  Google Scholar 

  14. G. Qi, D. Yue, M. Fukushima, S. Fukushima, R. Nishimoto, and Y. Nie, Bioresources Technol., 2012, 114, 637.

    Article  CAS  Google Scholar 

  15. R. Nishimoto, S. Fukuchi, S. Qi, M. Fukushima, and T. Sato, Colloids, Surf. A, 2013, 418, 117.

    Article  CAS  Google Scholar 

  16. M. Fukushima and K. Tatsumi, Colloids, Surf. A, 1999, 155, 249.

    Article  CAS  Google Scholar 

  17. J. Lian, Z. Hu, Z. Li, J. Guo, Z. Xu, Y. Guo, M. Li, and J. Yang, Biotechnol. Biotec. Eq., 2016, 30, 292.

    Article  CAS  Google Scholar 

  18. K. Nakayasu, M. Fukushima, K. Sasaki, S. Tanaka, and H. Nakamura, Environ. Toxicol. Chem., 1999, 18, 1085.

    Article  CAS  Google Scholar 

  19. R. P. Schwarzenbach, A. Werner, H. Christof, H. Stephan, and K. Jorg, China International Journal for Chemistry, 1997, 51, 908.

    Article  CAS  Google Scholar 

  20. H. Iwai, M. Fukushima, and M. Yamamoto, Anal. Sci., 2013, 29, 723.

    Article  CAS  PubMed  Google Scholar 

  21. S. Bose, M. F. Hochella Jr., Y. A. Gorby, D. W. Kennedy, D. E. AcCready, D. S. Madden, and D. H. Lower, Geochim. Cosmochim. Acta, 2009, 73, 962.

    Article  CAS  Google Scholar 

  22. M. Fukushima, K. Yamamoto, O. Ohtsuka, T. Aramaki, T. Komai, S. Ueda, and S. Horiya, Bioresour Technol., 2009, 100, 791.

    Article  CAS  PubMed  Google Scholar 

  23. E. A. Ghazy, M. G. Mahmoud, M. S. Asker, M. N. Mahmoud, M. M. Abo Elsoud, and M. E. Abdel S. Ami, Journal of American Science, 2011, 7, 604.

    Google Scholar 

  24. B. Stilinovic and J. Hrenovic, Acta. Bot. Croat., 2009, 68, 57.

    CAS  Google Scholar 

  25. D. W. King, Anal. Chim. Acta, 1991, 247, 125.

    Article  CAS  Google Scholar 

  26. A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. McInyre, Surf. Interface Anal., 2004, 36, 1564.

    Article  CAS  Google Scholar 

  27. I. Yumoto, M. Hishinuma-Narisawa, K. Hirota, T. Shingyo, F. Takebe, Y. Nodasaka, H. Matsuyama, and I. Hara, Int. J. Syst. Evol. Microbiol., 2004, 54, 2013.

    Article  CAS  PubMed  Google Scholar 

  28. Y. K. Lee, K. C. Sung, J. H. Yim, K. J. Park, H. Chung, and H. K. Lee, Ocean Polar Res., 2005, 27, 215.

    Article  Google Scholar 

  29. C. Pesciaroli, F. Cupini, L. Selbmann, P. Barghini, and M. Fenice, Polar Biol., 2012, 35, 435.

    Article  Google Scholar 

  30. E. E. Roden and D. R. Lovley, Appl. Environ. Microbiol., 1993, 59, 734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. H. W. Doelle, “Microbial Process Development”, 1994, World Scientific Publishing Company, Singapore.

    Book  Google Scholar 

  32. J. W. Stucki and J. E. Kostka, CR Geosci., 2006, 338, 468.

    Article  CAS  Google Scholar 

  33. T. Kamura, Y. Takai, and K. Ishikawa, Soil Sci. Plant Nutr., 1963, 9, 5.

    Article  Google Scholar 

  34. D. K. Newman and R. Kolter, Nature, 2000, 405, 94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by JSPS KAKENHI grant Numbers 24686100 and 16H02985.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Fukushima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aneksampant, A., Tanaka, A., Tu, X. et al. Roles of Microbial Activity and Anthraquinone-2,7-disulfonate as a Model of Humic Substances in Leaching of Iron from Hematite into Seawater. ANAL. SCI. 34, 1303–1308 (2018). https://doi.org/10.2116/analsci.18P147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P147

Keywords

Navigation