Skip to main content
Log in

Effects of Functional Group Density in Stylene-Divinylbenzene Copolymer Phase and of Supporting Electrolyte Concentration in Aqueous Phase on Performance of Iminodiacetate-type Chelating Resin in Terms of Contribution of Ion-Exchange Mechanism

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The effects of the functional group density in the stylene-divinylbenzene copoymer phase and of the supporting electrolyte concentration in the aqueous phase on the perfomance of the iminodiacetate (IDA)-type chelating resin were studied in terms of contribution of an ion-exchange mechanism. High hydrophobicity of the resin having a low functional group density interfered with penetration of aqueous solutions into the resin phase to slow the acid-base reaction and the adsorption reaction. Uptake of the cation in the supporting electrolyte into the resin phase was clearly indicated in each of two acid dissociation reactions. The high concentration of the supporting electrolyte enhanced acid dissociation of the IDA group, and a singly deprotonated species interacting with the supporting electrolyte cation strongly interfered with adsorption by the ion-exchange mechanism, while only slightly interfering with adsorption by the complexation. Both the complexed and ion-exchanged species respectively involving two or more IDA groups were destabilized to reduce the adsorption capacity of the resin having the low functional group density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Garg, R. K. Sharma, N. Bhojak, and S. Mittal, Microchem. J., 1999, 61, 94.

    Article  CAS  Google Scholar 

  2. V. Camel, Spectrochim. Acta, Part B, 2003, 58, 1177.

    Article  Google Scholar 

  3. J. L. Burguera and M. Burguera, Spectrochim. Acta, Part B, 2009, 64, 451.

    Article  Google Scholar 

  4. D. Das, U. Gupta, and A. K. Das, Trends Anal. Chem., 2012, 38, 163.

    Article  CAS  Google Scholar 

  5. S. Kagaya and Y. Inoue, Anal. Sci., 2014, 30, 35.

    Article  CAS  PubMed  Google Scholar 

  6. S.-C. Pai, P.-Y. Whung, and R.-L. Lai, Anal. Chim. Acta, 1988, 211, 257.

    Article  CAS  Google Scholar 

  7. S. Motellier and H. Pitsch, J. Chromatogr., A, 1996, 739, 119.

    Article  CAS  Google Scholar 

  8. Y. Gao, K. Oshita, K.-H. Lee, M. Oshima, and S. Motomizu, Analyst, 2002, 127, 1713.

    Article  CAS  PubMed  Google Scholar 

  9. H. Sakamoto, K. Yamamoto, T. Shirasaki, and Y. Inoue, Bunseki Kagaku, 2006, 55, 133.

    Article  CAS  Google Scholar 

  10. S. Kagaya, E. Maeba, Y. Inoue, W. Kamichatani, T. Kajiwara, H. Yanai, M. Saito, and K. Tohda, Talanta, 2009, 79, 146.

    Article  CAS  PubMed  Google Scholar 

  11. S. Kagaya, Y. Saeki, D. Morishima, R. Shirota, T. Kajiwara, T. Kato, and M. Gommei-Ide, Anal. Sci., 2013, 29, 1107.

    Article  CAS  PubMed  Google Scholar 

  12. S. Kagaya, T. Kajiwara, M. Gemmei-Ide, W. Kamichatani, and Y. Inoue, Talanta, 2016, 147, 342.

    Article  CAS  PubMed  Google Scholar 

  13. A. Tsuneto, Y. Suzuki, Y. Furusho, and N. Furuta, Bunseki Kagaku, 2009, 58, 623.

    Article  CAS  Google Scholar 

  14. S. Kagaya, Y. Aoki, Y. Saeki, T. Goto, M. Ohki, I. Obata, M. Saito, R. Shirota, and M. Gemmei-Ide, Bull. Soc. Sea Water Sci., Jpn., 2017, 71, 282.

    CAS  Google Scholar 

  15. M. Pesavento, R. Biesuz, M. Gallorini, and A. Profumo, Anal. Chem., 1993, 65, 2522.

    Article  CAS  Google Scholar 

  16. M. Pesavento and R. Biesuz, Anal. Chem., 1995, 67, 3558.

    Article  CAS  Google Scholar 

  17. M. Pesavento and R. Biesuz, Anal. Chim. Acta, 1997, 346, 381.

    Article  CAS  Google Scholar 

  18. R. Biesuz, M. Pesavento, A. Gonzalo, and M. Valiente, Talanta, 1998, 47, 127.

    Article  CAS  PubMed  Google Scholar 

  19. M. Pesavento, R. Biesuz, and C. Palet, Analyst, 1998, 123, 1295.

    Article  CAS  Google Scholar 

  20. M. Pesavento and R. Biesuz, React. Funct. Polym., 1998, 36, 135.

    Article  CAS  Google Scholar 

  21. M. Pesavento and E. Baldini, Anal. Chim. Acta, 1999, 389, 59.

    Article  CAS  Google Scholar 

  22. M. Pesavento, G. Alberti, and A. Profumo, Anal. Chim. Acta, 2000, 405, 309.

    Article  CAS  Google Scholar 

  23. A. Yuchi, T. Sato, Y. Morimoto, H. Mizuno, and H. Wada, Anal. Chem., 1997, 69, 2941.

    Article  CAS  PubMed  Google Scholar 

  24. A. Yuchi and N. Yoshida, Bull. Chem. Soc. Jpn., 2000, 73, 1841.

    Article  CAS  Google Scholar 

  25. A. Yuchi, K. Mukaie, Y. Sotomura, H. Yamada, and H. Wada, Anal. Sci., 2002, 18, 575.

    Article  CAS  PubMed  Google Scholar 

  26. A. Yuchi, Y. Sotomura, and K. Ueda, Bull. Chem. Soc. Jpn., 2002, 75, 731.

    Article  CAS  Google Scholar 

  27. Y. Watanabe, K. Ohnaka, S. Fujita, M. Kishi, and A. Yuchi, Anal. Chem., 2011, 83, 7480.

    Article  CAS  PubMed  Google Scholar 

  28. T. Teranishi, M. Harada, K. Asakura, H. Asanuma, Y. Saito, and N. Toshima, J. Phys. Chem., 1994, 98, 7967.

    Article  CAS  Google Scholar 

  29. D. Atzei, T. Ferri, C. Sadun, P. Sangiorgio, and R. Caminiti, J. Am. Chem. Soc., 2001, 123, 2552.

    Article  CAS  PubMed  Google Scholar 

  30. B. Noresson, P. Hashemi, and Å. Olin, Talanta, 1998, 46, 1051.

    Article  CAS  PubMed  Google Scholar 

  31. Ö. Szabadka, Talanta, 1982, 29, 183.

    Article  CAS  PubMed  Google Scholar 

  32. F. Mijangos and M. Diaz, Ind. Eng. Chem. Res., 1992, 31, 2524.

    Article  CAS  Google Scholar 

  33. L. Harju and T. Krook, Talanta, 1995, 42, 431.

    Article  CAS  PubMed  Google Scholar 

  34. R. Biesuz, A. A. Zagorodni, and M. Muhammed, J. Phys. Chem. B, 2001, 105, 4721.

    Article  CAS  Google Scholar 

  35. Y. B. Trostyanskaya and G. Z. Nefedova, Polym. Sci. U.S.S.R., 1963, 4, 654.

    Article  Google Scholar 

  36. J. S. Früchtel and G. Jung, Angew. Chem., Int. Ed. Engl., 1996, 35, 17.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mitsubishi Chemical Corporation for the gift of IDA resins of low functional group densities used in the preliminary studies. This work is supported by JSPS KAKENHI Grant No. JP26410148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Yuchi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imaeda, H., Yasui, T., Takada, K. et al. Effects of Functional Group Density in Stylene-Divinylbenzene Copolymer Phase and of Supporting Electrolyte Concentration in Aqueous Phase on Performance of Iminodiacetate-type Chelating Resin in Terms of Contribution of Ion-Exchange Mechanism. ANAL. SCI. 34, 807–813 (2018). https://doi.org/10.2116/analsci.18P018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P018

Keywords

Navigation