Skip to main content
Log in

Fluorescent Derivatization of Nitrite Ions with 2,3-Diaminonaphthalene Utilizing a pH Gradient in a Y-shaped Microchannel

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The on-chip derivatization of nitrite ions with 2,3-diaminonaphthalene (DAN) utilizing a pH gradient formed in a Y-shaped microchannel was investigated. Nitrite ions react with DAN at low pH, and strongly fluoresced at high pH. Therefore, a reaction at low pH followed by the addition of a strong alkaline solution is the usual procedure in a batch scheme. However, a strong alkaline solution, like an NaOH aqueous solution, erodes the wall of the microchannels in substrates made of glass or polymers, and has not been considered suitable for use in microchannels. We first investigated the derivatization reaction and fluorescent properties of nitrite ions with DAN. We found that the on-chip fluorescent derivatization reaction and detection without the addition of an alkaline solution is possible by controlling the pH values of the nitrite solution and the DAN solution to form a suitable pH gradient by utilizing a buffering effect of triethanolamine solution, which is used as an NO2 gas-absorption medium. These results have suggested the feasibility of novel reaction schemes which can provide the desired products due to a controlled pH gradient in the microchannels, as well as the possibility of an on-site monitoring microchip device for ambient NO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Manz, N. Graber, and H. M. Widmer, Sens. Actuators, 1990, B1, 244.

    Article  Google Scholar 

  2. S. C. Terry, J. H. Jerman, and J. B. Angell, IEEE Trans. Electron Devices, 1979, ED-26, 1880.

    Article  CAS  Google Scholar 

  3. D. J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. S. Effenhauser, and A. Manz, Science, 1993, 261, 895.

    Article  CAS  Google Scholar 

  4. C. S. Effenhauser, A. Manz, and H. M. Widmer, Anal. Chem., 1993, 65, 2637.

    Article  CAS  Google Scholar 

  5. K. Fluri, G. Fitzpatrick, N. Chiem, and D. J. Harrison, Anal. Chem., 1996, 68, 4285.

    Article  CAS  Google Scholar 

  6. L. D. Hutt, D. P. Glavin, J. L. Bada, and R. A. Mathies, Anal. Chem., 1999, 71, 4000.

    Article  CAS  Google Scholar 

  7. L. B. Kountny, D. Schmalzing, T. A. Taylor, and M. Fuchs, Anal. Chem., 1996, 68, 18.

    Article  Google Scholar 

  8. F. von Heeren, E. Verpoorte, A. Manz, and W. Thormann, Anal. Chem., 1996, 68, 2044.

    Article  Google Scholar 

  9. N. Chiem and D. J. Harrison, Anal. Chem., 1997, 69, 373.

    Article  CAS  Google Scholar 

  10. C. B. Cohen, E. Chin-Dixon, and T. T. Nikiforov, Anal. Biochem., 1999, 273, 89.

    Article  CAS  Google Scholar 

  11. J. Cheng, L. C. Waters, and P. Wilding, Anal. Biochem., 1998, 257, 101.

    Article  CAS  Google Scholar 

  12. W. C. Dunn, S. C. Jacobson, and J. M. Ramsey, Anal. Biochem., 2000, 277, 157.

    Article  CAS  Google Scholar 

  13. Y.-H. Chen and S.-H. Chen, Electrophoresis, 2000, 21, 165.

    Article  CAS  Google Scholar 

  14. M. Ueda, H. Nakanishi, and Y. Baba, Materials Science Engineering c: biomimetic, 2000, 12, 33.

    Article  Google Scholar 

  15. S. Parinov, V. Barsky, and A. Mirzabekov, Nucleic Acids Res., 1996, 24, 2998.

    Article  CAS  Google Scholar 

  16. A. A. Stomakhin, V. A. Vasiliskov, and A. D. Mirzabekov, Nucleic Acids Res., 2000, 28, 1193.

    Article  CAS  Google Scholar 

  17. J. Cheng, M. A. Shoffner, G. E. Hvichia, L. J. Kricka, and P. Wilding, Nucleic Acids Res., 1996, 24, 380.

    Article  CAS  Google Scholar 

  18. A. T. Woolley, D. Hadley, P. Landre, A. J. Demello, R. A. Mathies, and M. A. Northup, Anal. Chem., 1996, 68, 4081.

    Article  CAS  Google Scholar 

  19. M. A. Shoffner, J. Cheng, G. E. Hvichia, L. J. Kricka, and P. Wilding, Nucleic Acids Res., 1996, 24, 375.

    Article  CAS  Google Scholar 

  20. J. Khandurina, T. E. McKnight, S. C. Jacobson, L. C. Waters, R. S. Foote, and J. M. Ramsey, Anal. Chem., 2000, 72, 2995.

    Article  CAS  Google Scholar 

  21. K. Sato, M. Tokeshi, T. Kitamori, and T. Sawada, Anal. Sci., 1999, 15, 641.

    Article  CAS  Google Scholar 

  22. M. Tokeshi, T. Minagawa, and T. Kitamori, Anal. Chem., 2000, 72, 1711.

    Article  CAS  Google Scholar 

  23. M. L. Viriot, B. Mahieuxe, M. C. Carré, and J. C. André, Analusis, 1995, 23, 312.

    Google Scholar 

  24. H. Nakanishi, T. Nishimoto, M. Kanai, H. Abe, H. Kuyama, A. Arai, and T. Yoshida, Shimadzu Review, 1999, 56, 3.

    CAS  Google Scholar 

  25. T. Korenaga, T. Odake, Y. Ono, and L. Rong, Bunseki Kagaku, 2000, 49, 423.

    Article  CAS  Google Scholar 

  26. T. Sato, H. Susaki, T. Iwata, K. Yamamoto, T. Odake, and T. Korenaga, Trans. IEE of Japan, 2001, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odake, T., Tabuchi, M., Sato, T. et al. Fluorescent Derivatization of Nitrite Ions with 2,3-Diaminonaphthalene Utilizing a pH Gradient in a Y-shaped Microchannel. ANAL. SCI. 17, 535–538 (2001). https://doi.org/10.2116/analsci.17.535

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17.535

Navigation