Skip to main content
Log in

Bio-inert Properties of TEG Modified Dendrimer Interface

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The bioinert interfaces that prevent adhesion of proteins and cells are important for biomaterial applications. In order to design a bioinert interface, the immobilization of an appropriate functional group and the control of molecular density is required. Dendrimer was modified with triethylene glycol (TEG) to display a dense brush structure. TEG with different density and terminal groups were immobilized with a dendrimer template and thiol terminated molecules. The inhibitory effect on protein and bacteria binding was investigated. The physical property of the interface was measured by QCM-admittance to clarify the factor of the bioinert property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Prime and G. M. Whitesides, Science, 1991, 252, 1164.

    Google Scholar 

  2. M. Mrksich, G. M. Sigal, and G. M. Whitesides, Langmuir, 1995, 11, 4383.

    Article  CAS  Google Scholar 

  3. D. J. Kim, J. M. Lee, and B. G. Chung, Biotechnol. Bioeng., 2011, 108, 1194.

    Article  CAS  PubMed  Google Scholar 

  4. D. W. Branch, B. C. Wheeler, G. J. Brewer, and D. E. Leckband, Biomaterials, 2001, 22, 1035.

    Article  CAS  PubMed  Google Scholar 

  5. R. Gref, M. Lück, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, and R. H. Müller, Colloids Surf., B, 2000, 18, 301.

    Article  CAS  Google Scholar 

  6. J. Ladd, Z. Zhang, S. Chen, J. C. Hower, and S. Jiang, Biomacromolecules, 2008, 9, 1357.

    Article  CAS  PubMed  Google Scholar 

  7. K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, and N. Nakabayashi, J. Biomed. Mater. Res., 1998, 39, 323.

    Article  CAS  PubMed  Google Scholar 

  8. R. A. Frazier, G. Matthijs, M. C. Davies, C. J. Roberts, E. Schacht, and S. J. B. Tendler, Biomaterials, 2000, 21, 957.

    Article  CAS  Google Scholar 

  9. T. Hatakeyama, M. Tanaka, and H. Hatakeyama, Acta Biomater., 2010, 6, 2077.

    Article  CAS  PubMed  Google Scholar 

  10. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev., 2005, 105, 1103.

    Article  CAS  PubMed  Google Scholar 

  11. M. Krishnamoorthy, S. Hakobyan, M. Ramstedt, and J. Gautrot, Chem. Rev., 2014, 114, 10976.

    Article  CAS  PubMed  Google Scholar 

  12. M. J. Fréchet and D. A. Tomalia (ed.), “Dendrimers and Other Dendritic Polymers”, 2001, Wiley, New York.

    Book  Google Scholar 

  13. E. Matsumoto, T. Fukuda, and Y. Miura, Colloids Surf., B, 2011, 84, 280.

    Article  CAS  Google Scholar 

  14. S. K. Oh, Y. G. Kim, H. Ye, and R. M. Crooks, Langmuir, 2003, 19, 10420.

    Article  CAS  Google Scholar 

  15. T. Fukuda, E. Matsumoto, S. Onogi, and Y. Miura, Bioconjugate Chem., 2010, 21, 1079.

    Article  CAS  Google Scholar 

  16. T. Satomi, Y. Nagasaki, H. Kobayashi, H. Otsuka, and K. Kataoka, Langmuir, 2007, 23, 6698.

    Article  CAS  PubMed  Google Scholar 

  17. H. Furusawa, T. Sekine, and T. Ozeki, Macromolecules, 2016, 49, 3463.

    Article  CAS  Google Scholar 

  18. E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides, Langmuir, 2001, 17, 6336.

    Article  CAS  Google Scholar 

  19. G. Sauerbrey, Z. Phyzik, 1959, 155, 206.

    Article  CAS  Google Scholar 

  20. H. Sota, H. Yoshimine, R. F. Whittier, M. Gotoh, Y. Shinohara, Y. Hasegawa, and Y. Okahata, Anal. Chem.. 2002, 74, 3592.

    Article  CAS  PubMed  Google Scholar 

  21. K. Sadman, C. G. Wiener, R. A. Weiss, C. C. White, K. R. Shull, and B. D. Vogt, Anal. Chem., 2018, 90, 4079.

    Article  CAS  PubMed  Google Scholar 

  22. M. V. Voinova, M. Jonson, and B. Kasemo, Biosens. Bioelectron., 2002, 17, 835.

    Article  CAS  PubMed  Google Scholar 

  23. J. R. Stokes, L. Macakova, A. Chojnicka-Paszun, C. G.. de Kruif, and H. H.. de Jongh, Langmuir, 2011, 27, 3474.

    Article  CAS  PubMed  Google Scholar 

  24. T. Ozeki, M. Morita, H. Yoshimine, H. Furusawa, and Y. Okahata, Anal. Chem., 2007, 79, 79.

    Article  CAS  PubMed  Google Scholar 

  25. P. C. Lau, J. R. Dutcher, T. J. Beveridge, and J. S. Lam, Biophys. J., 2009, 96, 2935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. V. Vogel and M. Sheetz, Nat. Rev. Mol. Cell Biol., 2006, 7, 265.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Grant-in-Aid for Scientific Research B (JP19H02766), Grant-in-Aid for Challenging Research (Pioneering) (JP19K22971), and Grant-in-Aid for Scientific Research on Innovative Areas (JP20106003, JP20H05230 and JP20H04825), and Eno scientific foundation. We would like to express our appreciation for the fruitful discussion with Prof. Takeshi Hasegawa (Kyoto University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiko Miura.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miura, Y., Kojima, Y., Seto, H. et al. Bio-inert Properties of TEG Modified Dendrimer Interface. ANAL. SCI. 37, 519–523 (2021). https://doi.org/10.2116/analsci.20P388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P388

Keywords

Navigation