KAJIAN PEMANFAATAN LIMBAH KACA SEBAGAI PENGGANTI SEBAGIAN AGREGAT HALUS KOLOM MODULAR

Fedra Ari Wibowo, Chundakus Habsya, Rima Sri Agustin

Abstract


masih menggunakan metode konvensional. Proses bongkar pasang begesting kolom akan menunda waktu pemasangan batu-bata, sehingga dalam menyelesaikan bangunan akan membutuhkan waktu yang semakin lama. Menggunakan komponen prapabrikasi merupakan salah satu solusi untuk mempersingkat waktu dalam pengerjaan bangunan. Tujuan penelitian ini adalah untuk mengkaji (1) persentase limbah kaca sebagai pengganti sebagian agregat halus agar diperoleh nilai penyerapan air segmen kolom modular yang minimal; (2) persentase optimal limbah kaca sebagai pengganti sebagian agregat halus agar diperoleh kuat aksial kolom modular beton yang maksimal; (3) perbandingan kuat aksial dan biaya pembuatan kolom praktis konvensional dengan kolom modular beton. Penelitian kuantitatif ini menguji uji penyerapan air segmen kolom modular yang mengacu SNI 03-0349-1989 dan uji kuat aksial kolom modular beton yang mengacu SNI 2847-2013. Biaya pembuatan dan pekerjaan benda uji menggunakan acuan Keputusan Walikota Surakarta Nomor 050-151 tahun 2019 Tentang Standar Satuan Harga tahun Anggaran 2019 dan Peraturan PUPR 28/PRT/M/2016 tentang Analisis Harga Satuan Pekerjaan Bidang Pekerjaan Umum. Hasil penelitian ini sebagai berikut: (1) Variasi limbah kaca sebesar 15% sebagai pengganti agregat halus menghasilkan penyerapan air segmen kolom praktis modular minimal sebesar 11, 68% dan memenuhi mutu II SNI 03-0349-1989; (2) Variasi limbah kaca optimal sebesar 3,74% sebagai pengganti agregat halus  menghasilkan kuat aksial  kolom praktis modular beton maksimal sebesar 7,39 MPa; (3) Kuat aksial kolom praktis konvensional 17% lebih tinggi dari kolom praktis modular beton sedangkan biaya pembuatan kolom praktis konvensional 39,59% lebih tinggi dari kolom praktis modular beton. 

Abstract:One of the components of building construction is a column. The column implementation method still uses conventional methods. The process of loading and unloading the columns will delay the installation of the bricks, so finishing the building will take longer. Using prefabricated components is one solution to shorten the time in building construction. This study aimed to examine  (1) the percentage of glass waste as a substitute of the fine aggregate in order to obtain minimal water absorption value for the practical modular column segment; (2) the percentage optimal of glass waste as a substitute for some of the fine aggregate in order to obtain maximum axial strength of the concrete modular practical column; (3) the comparison of axial strength and manufacturing cost of conventional practical columns with concrete modular practical columns. This quantitative research tests with a practical modular column segment water absorption test referring to SNI 03-0349-1989 and a concrete modular practical column axial strength test referring to SNI 2847-2013. The manufacturing costs and specimen processing referring to the Mayor of Surakarta Decree Number 050-151 of 2019 concerning the Standard Unit Price for the 2019 Fiscal year and PUPR Regulation 28 / PRT / M / 2016 concerning the Analysis of Work Unit Prices in the Public Works Sector. The results of this study were as follows: (1) The variation of glass waste by 15% as a substitute for fine aggregate resulted in the minimal 11.68% of the modular practical column segment water splitting and fulfilling the quality II SNI 03-0349-1989.; (2) The variation of glass waste optimal by 3.74% as a substitute for fine aggregate resulted in the maximum axial strength of the concrete modular practical column of 7.39 Mpa.; (3) The conventional practical column's axial strength was 17% higher than the concrete modular practical column, while the manufacturing cost of the conventional practical column was 39,59% higher than the concrete modular practical column.

Keywords


Kata Kunci : ekonomis, kolom praktis modular, kolom praktis konvensional, kuat aksial modular, limbah kaca, penyerapan air

Full Text:

PDF
rticle

References


Asroni, A. (2017). Teori dan Desain Balok Plat Beton Bertulang Berdasarkan SNI 2847-2013. In Surakarta: Program Studi Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Surakarta. UMS Press.

BPS. (2019). STATISTIK INDONESIA 2019 (Subdirektorat Publikasi dan Kompilasi Statistik (ed.)). BPS-Statistics Indonesia.

Calmon, J. L., Sauer, A. S., Vieira, G. L., & Teixeira, J. E. S. L. (2014). Effects of windshield waste glass on properties of repair mortars. Cement and Concrete Composites, 53, 88–96. https://doi.org/10.1016/j.cemconcomp.2014.04.008

Dyastari, F., Agus, S. E., & Tyaghita, B. (2017). Penerapan Konsep Modular dalam Perancangan Rumah Susun Berdasarkan Right Conservation Method. Temu Ilmiah IPLBI.

Generalova, E. M., Generalov, V. P., & Kuznetsova, A. A. (2016). Modular Buildings in Modern Construction. Procedia Engineering. https://doi.org/10.1016/j.proeng.2016.08.098

Indonesia, C. N. N. (2018). 5 Fakta Memprihatinkan Seputar Sampah. CNN Indonesia. https://www.cnnindonesia.com/gaya-hidup/20180119202025-282-270298/5-fakta-memprihatinkan-seputar-sampah

Ling, T. C., & Poon, C. S. (2012). A comparative study on the feasible use of recycled beverage and CRT funnel glass as fine aggregate in cement mortar. Journal of Cleaner Production, 29–30, 46–52. https://doi.org/10.1016/j.jclepro.2012.02.018

Lu, J.-X., Zheng, H., Yang, S., He, P., & Poon, C. S. (2019). Co-utilization of waste glass cullet and glass powder in precast concrete products. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2019.06.231

Nasional, B. S. (1989). SNI 03-0349-1989. Bata Beton Untuk Pasangan Dinding.

Nasional, B. S. (2002). SNI 03-6825-2002. Standar Nasional Indonesia Metode Pengujian Kekuatan Tekan Mortar Semen Portland Untuk Pekerjaan Sipil.

Nasional, B. S. (2012). SNI 7656:2012. Tata Cara Pemilihan Campuran Untuk Beton Normal, Beton Berat Dan Beton Massa.

Nasional, B. S. (2013). SNI 2847-2013. Persyaratan Beton Struktural Untuk Bangunan Gedung.

Pambudi, H. S., Habsya, C., & Adi S, T. L. (2017). Pengaruh Pengunaan Pecahan Genteng dan Penambahan Fly Ash Terhadap Kuat Tekan Segmen Kolom Modular dan Beban Aksial Komponen Kolom Sebagai Suplemen Bahan Ajar Mata Kuliah Teknologi Beton. Indonesian Journal Of Civil Engineering Education. https://doi.org/10.20961/ijcee.v1i2.18230

Pratama, H. S., Anggraeni, R. K., Hidayat, A., & Khasani, R. R. (2017). Analisa Perbandingan Penggunaan Bekisting Konvensional, Semi Sistem, Dan Sistem (Peri) Pada Kolom Gedung Bertingkat. Jurnal Karya Teknik Sipil, 6(1), 303–313.

Sani, M. S. H. M., Osman, A. R., & Muftah, F. (2015). Investigation on compressive strength of special concrete made with crushed waste glass. MATEC Web of Conferences, 27, 2–5. https://doi.org/10.1051/matecconf/20152702005

Silaban, D. P., & Ola, A. L. (2019). Limbah Fly Ash Pabrik Minyak Nabati sebagai Bahan Substitusi Semen dalam Pembuatan Batako. Jurnal Penelitian Teknologi Industri, 11(1), 30–38.

Tošić, N., Marinković, S., Dašić, T., & Stanić, M. (2015). Multicriteria optimization of natural and recycled aggregate concrete for structural use. Journal of Cleaner Production, 87(1), 766–776. https://doi.org/10.1016/j.jclepro.2014.10.070




DOI: https://doi.org/10.20961/ijcee.v7i1.60710

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Indonesian Journal Of Civil Engineering Education



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.