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1. INTRODUCTION 

State and parameter estimation are basic themes of control engineering. The solution is worked out for 

linear systems; however, nonlinear state and parameter estimation raises a lot of questions. To solve 

the optimum nonlinear filtering problem, propagation of the conditional probability density function, 

which needs a huge amount of computations, is necessary and thus real time application is not 

possible or not practical [1], [2]. Instead, suboptimal schemes, as the EKF (extended Kalman filter [3], 

[4]) etc. are used in practice. It is well known that the Ito equation and the Fokker – Planck or 

Kolmogorov forward equation play a great role in description of the nonlinear state evolution [5], [6]. 

The Kolmogorov forward equation describes the evolution of transition probability density of the 

Markov process generated by the Ito equation. However, the computation is related to special 

circumstances. Besides, the Kolmogorov forward equation has been solved only in a few simple cases 

[5]. In the past several attempts have been made to find practical solutions for the nonlinear estimation 

problem [7], [8] etc. A “dynamic optimization filter” (DOF) and a “dynamic optimization parameter 

estimator” (DOPE) was also described [9], [10]. This estimator tries to estimate the process and 

output noise by means of dynamic optimization, for which purpose an optimization method with the 

name “optimized stochastic trajectory / output sequence tracking” (OSTT, [10]) has been developed. 

A different approach is the “nonlinear optimization filter” (NOF). This filter predicts the state 

evolution on a finite horizon and updates the estimates through optimization on the horizon. The filter 

is of predictor – corrector type. To the prediction the linearized system is used, to the discretization 

virtual intersample points are defined. If accuracy of discretization is improved, accuracy of the 

prediction, too, will improve to a limit. The resultant state estimate difference may be given with a 

sum. This predictor has been called MISLINPRED (multi intersample linearization based nonlinear 

predictor [11]). MISLINPRED gives possibility for intersample state estimation, too. However, if the 

number of virtual intersample points reaches infinity, the summation can be replaced with an integral, 

which may be evaluated. Consequently, for the prediction a closed formula, called M-operator, may 

be obtained. The correction (update) is made through optimization on a finite horizon, in function of 

assumed states at the bottom of horizon. Predictions with the M-operator necessitate rethinking 

previously developed methods, which use predictions, including the author’s own methods for state 

and parameter estimation. It is shown in the paper that the NOF filter may be an approximation of 
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minimum variance nonlinear optimization filter (MV-NOF), if expected value of output estimation 

error is zero. On the other hand,  the  predictor  of  EKF  may  be  replaced  with  the  M-operator. The 

resultant filter is the MOD-EKF (modified extended Kalman filter). The MOD-EKF may give better 

state estimates than EKF. An additional advantage of the NOF or MV-NOF is that optimization on a 

finite horizon gives possibility to synchronous parameter estimation, even in case of time varying 

parameters, through extension of the state vector with the unknown parameters and through forgetting 

factors  [11], [12]. This paper includes revision and extension of the earlier developed MISLINPRED 

algorithm for the case of infinite virtual intersample points and for overall nonlinear state estimation. 

The paper is extended version of the [13] paper, presented at the 20th IFAC World Congress in 

Toulouse in 2017. The extension is related to robust nonlinear estimation and robust nonlinear 

stochastic control design. This is the first time that analytical solution is achieved with the original 

nonlinear equations, applying the M-operator and OSTT through a series of two – stage optimizations; 

all former solutions by the author were obtained either through optimization with the linearized model 

or through numerical optimization. The only requirements are differentiability of the model (to 

compute the M-operator) and manageability of the derived equations to get a unique solution.  

2. NONLINEAR PREDICTION THROUGH STATE EVOLUTION COMPUTATION 

2.1 Prediction with Computing States at Finite Intersample Points 

Consider a nonlinear ergodic stochastic process described with the state and output equations 

)),()()(()1( i,i,ii wuxfx =+                                                                                                                   (1) 

.,,,iii pmn
RyRuRxnxhy += )())(()(                                                                               (2) 

In (1), (2) w(i) and n(i) are stochastic disturbances of known statistics. Expectations of states from x(i) 

to x(i+1) evolve in a nonlinear manner from E{x(i)} to E{x(i+1)}. In the following it is assumed that 

expected value of states moves on a fictitious trajectory, approximation of which may be computed 

with the linearized model. For linearizable plants the linearized model may be given in the form 

,iiiiiii )()()()()()()1( wDuBxAx ++=+                                                                                      (3) 
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In (3), (4) A, B, C, D are appropriate matrices. If the plant model is not linearizable in the whole 

domain of states, it is usually linearizable sectionally. On the basis of (3), fictitious intersample states 

may be defined. If there are NN fictitious intersample points between x(i) and x(i+1), the states and 

control signals at the end of intersample sections may be denoted as 

....i,iii,i,...i,i NNNN ).()(),1()()()()( 21121 uuxxxxx +=+                                                                      (6) 

The estimated state increment )1( + ix̂  follows from the state increment )(ix̂ if the control signal 

increment is known. )1()1()1( 11 −−−=− iˆiˆiˆ' xxx results in the estimated state increment )(1 iˆ' x , 

which can be computed with (3), too, and )()()( 11 iˆ'iˆiˆ xxx += represents an estimated intersample 

state. However, when the new state is computed starting from ,iˆ )(1x a new linearization has to be made 

at the 1)-( 1),-(1 iiˆ ux  operating point (it is assumed that )1(1 −ix̂  is in the close neighborhood of the 

trajectory of nonlinearly evolving states), and zero control signal change has to be taken into 

consideration (in case of zero order hold). Increasing the number of intersample sections may give a 

better approximation of the nonlinear trajectory of states, increasing the accuracy of prediction. 

Assuming zero order hold, the linearized equations between intersample points  with estimated states 

and x̂ (i)=E{x(i)}, E(w(i)=0 are  

),1())1()1(()( 11 −−−= i'i,iˆiˆ' xuxAx                                                                                                 (7) 
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If A, B depend on w(i), value of the process noise at the operating point of real sampling instants may 

be taken into consideration with its expectation. With 
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)()()()()1( 121 iˆ'...iˆ'iˆ'iˆiˆ
NN ++++=+ xxxxx                                                                               (10) 

the whole trajectory of estimated states may be approximated, resulting in an estimation for the states 

at the next real sampling time point, through a series of intersample state estimations. At the 

beginning of computations estimation is made on the expected value of states at the actual and 

preceding sampling instants. Next an estimation is made on the initial increment to be taken into 

consideration, e.g. as  

).1())1()(()1(1 +−−− NN/iiˆiˆ' xxx                                                                                                (11) 

The prediction is based on the relationship  

}()()({)}({ w),u,E,,E EExfwuxf =                                                                                                 (12) 

for linear systems.The described predictor may be called “multi intersample linearization based 

nonlinear predictor” (MISLINPRED [11]). 

2.2 Prediction with Assumption of Infinite Intersample Points  

With (7)~(10), state increment prediction on a real sampling interval through assumption of finite 

virtual sampling intervals may be given in the form 
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In (13) 0 ≤ k ≤ NN is serial number of virtual sampling instants. Since E{w(i)}=0, a disturbance term 

is lacking in (13). Introducing the  

                      T
2121 ][ mn

* u,...u,u,x̂...,x̂,x̂ˆ =x                                                                                      (14) 

extended state vector, for k=∞ the above sum may be replaced with  
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symbolized with the M - operator. Elements of (14) are sums of integrals of multivariable scalar 

functions. The variables are independent, but related to each other through the sampling instants. It 

can be seen that the above algorithm may be extended for the case of continuous – discrete Kalman 

filter [3]. However, the real sampling time points have to be replaced with virtual ones in this case. 

The result may be verified for linear systems as follows. Consider a SISO system with the state 

equation 

).()()1( ibuii +=+ Axx                                                                                                                        (16) 

With (13) for the real state increment estimation 
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For ∞virtual intersample points 
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However, subtracting the state equation 

 

)1()1()( −+−= ibuii Axx                                                                                                                    (19) 
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from (16), we get back (18) for .ˆ xx =  The prediction based on state evolution computation gives 

back what follows from the linear model. However, the nonlinear estimation is more complex and the 

M-operator based estimation may be better – especially for large disturbances – than increment 

computation from the nonlinear model.  

3. MINIMUM VARIANCE ESTIMATION 

3.1. Relationship between State and Output Variances 

The mean of a random variable [14] 

y=h(x)                                                                                                                       (20) 

can be expressed as 




−

= dx,xpxhxhE )()()}({                                                                                                                    (21) 

where  p(x) is the density function of x. If x is concentrated around its mean, E{h(x)} may be 

expressed with the moments of x. Suppose that p(x) is negligible outside the interval [α-ε,α+ε] and in 

this interval h(x))=h(α). In this case  

E{h(x)}=h(α).                                                                                                                                      (22) 

To get a better approximation, h(x) may be approximated with the polynomial 

h(x)=h(α)+h’ (α)(x-α)+h’’(α)(x-α)2/2+...                                                                                              (23) 

If h(x) is substituted with a parabola, from (21) and (23) 

,/σα'h'αhxhE 2)()()}({ 2+==y                                                                                                    (24) 

where σ2 is variance of x. On the basis of (24), the mean of h2(x) can be expressed as 
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Substituting (24) for μy and discarding the term of σ4, , we get 

222 )( ,h'  =y                                                                                                                                  (26) 

i.e. first order estimate of the output variance is proportional to the input variance. If there are two 

state variables, the output can be given in the form 

                            y=h(x1,x2)                                                                                                                 (27) 

Expectation of the output can be computed [13] as 
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In (28) p(x1,x2) is the joint density of x1 and x2. (28) may be given in the form of a single integral 

,dxxpxhxhE 1111 )()()}({ 


−

= x                                                                                                            (29) 

         .dxx,xpxp 221 )()(
1 



−

=x                                                                                                           (30) 

The similarity between (29) and (21) can be noticed. If the same assumptions can be made for x1 and 

px(x1), as well as x2 and px(x2) as in the single variable case, proportionality between the input and 

output variances may be seen. If there are more than two state variables, with the same reasoning we 

get the same conclusion.     

3.2. Conditions for Minimum Variance Estimation 

To make the estimation a minimum variance one, optimum prediction and optimum correction in a 

minimum variance sense is necessary. The objective is minimization of the reconstruction error 

variance   
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Substituting (32) into (31),  
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Consider a SISO system. According to (26), the estimated output variance – with some assumptions – 

is proportional to the estimated state variance (provided, the output disturbance is not taken into 

consideration). If there is a unique relationship between the estimated states and estimated output, 

minimization of the estimated output variance results in minimization of the estimated state variance, 

provided, there is a strictly monotone increasing relationship (sufficient condition) between the 

variances. This relationship can be examined through simulations. Minimization of the estimated 

output variance may be approximated from the performance index (PI)  


=

−
−

N

i

iŷiy
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through optimization on a finite horizon in function of the estimated states at the bottom of horizon. 

For the state estimation error variance 
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and for the output estimation error variance  
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If there is only one state variable and the output estimation is unbiased, the (34) PI can be used for 

minimization of (35).  Otherwise, minimization of the output estimation error variance 
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(approximation of (36)) gives possibility for better state estimation, if the relationship between (35) 

and (36) is strictly monotone increasing for  some suitable norm of (35). This relationship can also be 

scrutinized with simulations. Alternatively, if there are several state variables, expectation of the 

output can be expressed with each state variable separately, as shown in (28) ~ (30), and investigation 

of relationship between (35) and (36)  may be led back to the single state variable case. However, if 

there is additional disturbance on the output, it has to be corrected to the estimation. The disturbance 

free output can be given as  

y*(i) = y(i)-n(i).                                                                                                                                    (39) 

Since value of n(i) is not known, we may replace the disturbance with its expectation: 

y*(i)  ≈y(i)-E{n(i)}.                                                                                                                           (40) 

If E{n(i)}=0,  y*(i)  ≈ y(i) may be applied.  

3.3. Correction through Optimization on a Finite Horizon 

The  proposed  estimator  may  be  viewed  as  a predictor – corrector [3] one. Prediction is made with 

MISLINPRED or the M - operator on a finite horizon in function of selected starting states at the 

bottom, and correction is made through minimization of a suitable PI, which may have the form  
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To the computations we assume that the state and output equations of the model are analytic and the 

stochastic process is ergodic. (41) is the output variance, in practice the 1/Nm-1 factor may be 

omitted. If 

1,-0,...;1,...0;)}()({ NjmkjiŷjiyE kk ===−−−                                                                         (42) 

(41) is approximation of the output estimation error variance, too. The filter computed through 

minimization of (41) may be called “nonlinear optimization filter” (NOF). If (42) is subtracted from 
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the output estimation error in (41) (like in (37) for a SISO plant), the resulting filter may be called “  

minimum   variance   nonlinear   optimization  filter”  (MV-NOF). However, NOF is equivalent with 

MV-NOF, if expected value of the output estimation error is zero. Due to complexity of the PI, 

analytical solutions may be problematical. The optimization problem, however, may be solved 

through iterations [10] or through discretizing the states at the bottom of horizon and evaluating the PI 

for each discretized state combination. The global minimum is determined from comparison of the PI 

values belonging to different independent variable combinations at the bottom. To the iterative 

solution assume that the PI has the form of (41). Define a vector as  

.)]1()1()([)( T+−−= nNF,...NF,NFNQ                                                                                        (43) 

Ideal value of Q(N) is zero. Therefore, for the deviations  
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The derivatives in the (45) Jacobian matrix can be evaluated numerically. From (44) 

).()()( 11 NαNiˆNiˆ nn
QJxx
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In practice J-1 is not computed, but (44) is solved for the new state estimate. (46) gives possibility for 

recursive computations, when the procedure is repeated at the new sampling instant, and starting 

estimates of states at the bottom of new horizon are the states computed on the preceding horizon. A 

relatively simple computation may be used for state estimation through fixed point iteration [15]. For 

the ideal case from (43)   

 The formula for iteration for the (47) system of equations is 

,ˆNˆ nn
xQx +=+ )(1                                                                                                                           (48) 

where 0≺α ≦ 1 is the learning rate. If the iteration is not convergent, for another initial point and / or 

smaller α it may converge. To complete the computation for several initial state values, the trap of 

finding the neighbourhood of a local minimum may be avoided. However, in case of recursive 

computations, this may be important only at the start of computations.  

3.4. Some Conditions for Robustness 

To have a robust estimator, either the design has to be made in accordance with robustness principles, 

or a non-robust estimator may be made robust with some transformation. Robustness means that small 

disturbances or changes in the design hypothesis result in only small estimation errors. The first step 

for robust estimation is to get a process model as accurate as possible. Estimation with MISLINPRED 

or the M - operator gives inherently some robustness.  In addition there are several possibilities to 

make a non – robust estimator to a robust one: the method of weighted least squares (WLS [16]), least 

trimmed  squares  regression  (LTS [17]),  maximum  trimmed  likelihood estimation (MTLE [18]), 

M-estimation [19], S-estimation [20], MM-estimation [21]. In case of WLS (41) is modified to  
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where wi-j,k is scalar weight. Most accurate results are obtained when the weights are inversely 

proportional to the output variances at each combination of predictor values, i.e. for a SISO plant  
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However, the variances are not known, instead estimated weights are used based on a set of replicate 

measurements: 
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In (51) r is number of replicate measurements at the j-th stage, yi-j,s is output indexed by stage number 

and replicate measurement serial number, and jiy −  is mean of the output. To get relatively adequate 

values for wi-j, a large number of replicate measurements are needed. In case of no replicate 

measurements for a set of predictor variable values, repeated measurements may be applied. A better 

approximation is to relate the variance of response to the predictor variables: 
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A power function is often a good choice: 

,jif'cσ 2c
1ji ))((2 −=− x                                                                                                                         (54) 

where c1, c2 are suitable constants. Another approach is to extend the state vector with the unknown 

weights and compute their estimates from optimization. A disadvantage of WLS is that the applied 

weights are only approximations. LTS is a good alternative and best choice of some researchers. The 

LTS estimates are defined as  

N,hN/,εx̂
h
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i

x
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2
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where 2
i  represents the i-th order squared error. The h trimming constant determines the robustness 

of the LTS estimator, since N-h observations with the largest errors don’t influence the sum. If h=N, 

the resultant estimator is the traditional LS and the robustness is the smallest. MTLE may be derived 

from the maximum likelihood estimator similarly to derivation of LTS estimation [22]. 

4. MODIFIED EXTENDED KALMAN FILTER 

An approximate solution to the nonlinear filtering problem is the EKF [3], [4]. The EKF algorithm 

calculates the gain and variance matrices and updates from the linearized model, but the original 

nonlinear equations are are used to state propagation. However, the standard state propagation of EKF 

may be replaced with prediction by the M - operator. The resulting filter may be called “modified 

extended Kalman filter”(MOD-EKF). The state prediction equation for discrete EKF has the form[3] 

)).1()11(()1( −−−=− i,/iiˆi/iˆ uxfx                                                                                                       (56) 

However, the M - operator uses infinite virtual sampling points to estimate the state evolution as 

shown in section 2.2, and the result may be better prediction. The other steps of the computation 

(innovation, innovation covariance and Kalman gain computation, state and covariance correction [3]) 

are the same for MOD-EKF as for EKF. The MOD-EKF algorithm may be summarized in the 

following manner:    

State propagation: 

))()(()11()1( i,i/iiˆi/iˆ uxMxx +−−=−  

Covariance prediction: 
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Innovation:  

)1()()( −−= i/iˆii yye                                                                                                                           (58) 

Innovation covariance: 
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Kalman gain: 

1T ))1(i()1()( −−−= e/iˆi/i RxCiPK                                                                                                      (60) 

State correction: 

                )()()1()( iii/iˆi/iˆ eKxx +−=                                                                                                  (61) 

Covariance correction: 

)1())]1(()([)( −−−= i/ii/iˆii/i PxCKIP                                                                                               (62) 

Initial conditions: )00();00( ,,ˆ Px    

Assumed disturbances:  ))(0))(0( i,(,i, nw RNRN , white and Gaussian. 

5. SIMULATION RESULTS 

Example 1: 

Consider a plant given with the equations 

,iwibuiuixexpaix )()()())(()1( ++−=+                                                                                             (63) 

).1(1()1( +++=+ in)ixiy                                                                                                                    (64) 

In (63) a, b are parameters. It is assumed that the disturbances are of normal distribution and the 

expectations, variances and parameter values are 
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The linearized state equation is 
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                                                                          (66) 

Assuming 2 finite intersample points, the state equations on the first, second and third virtual 

intersample sections are  

),1(')1(1))-(()( 11 −−−−= ix̂iuix̂expaix̂'                                                                                       (67) 

),1(')1())1(()( 2112 −−−−−= ix̂iuix̂expaix̂'                                                                                   (68) 
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−−−−−=
                                                                                  (69) 

With (67) ~ (69)  

).()()()1( 321 ix'ix'ix'ix̂ ++=+                                                                                            (70) 

Measurement data was generated in accordance with (65). If ∞ intersample points are assumed, 

through use of (15) 

1).-(-)(())..1())1((2

)())((2)1(

iuiubiuix̂expa

iuix̂expaix̂Δ

+−−−−

−=+
                                                                               (71) 

To optimization on a finite horizon, the (37) PI and one, two and three stages horizons were taken into 

consideration. The optimum was approximated through discretizing the states at the bottom of horizon 

with the step size Δx=0.1, evaluating the PI for each discretized state and picking up the optimum, 

assuming that the optimum state at the bottom is in the range  

x(i-N) – 0.1 ≤  )( Nix̂ −  ≤  x(i-N) + 0.1, 

where N is length of horizon in steps. For computations on finite intersample sections, (11) was 

assumed. Fig. 1 shows simulation results with MOD-EKF with ∞ intersample points and EKF: 
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)(ix  EKF 

MOD-EKF )(ix̂  

)(ix̂  

 

Fig1. Real and estimated states with MOD-EKF and EKF 

Improvement of estimation with MOD-EKF based on comparison of sums of squared errors on a 9 

step horizon is about 40%. The result with MV-NOF may be comparable with the one obtained with 

MOD-EKF, however, tuning the filter is necessary. The estimation is more accurate if the length of 

finite horizon is 2 stages compared with the case of one stage, and approximately the same for 3 

stages. For the case of finite virtual intersample points, the result is better for 2 assumed intersample 

points than for only one, and better for one intersample point than without intersample point. At the 

same time, the simulation gives better result for ∞virtual intersample points than only for two ones.  

Example 2: 

Consider a discrete nonlinear process given by the state and output equations 

).(()()()1( 2 iwi)cuibxiaxix +++=+                                                                                                  (72) 

).1()1()1( +++=+ inixiy                                                                                                                    (73) 

The parameter values are a=0.3, b=0.5 and c=0.6. The assumed disturbances are as in Example 1, with 

Rw(i)=0.15, Rn(i)=0.075 and Rw(i)=0.006, Rn(i)=0.003, repectively. The state estimation algorithm with 

MOD-EKF can be given with the following equations: 
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)()())(2()1( 2 iRi/iPi/ix̂ba/iiP w++=+  

)1()1()1( /iiŷiyie +−+=+  

)()1()1( iRi/iPi/iR ne ++=+  

)1()1()1( ++=+ iR/i/iPiK e  

)1()1()1()11( ++++=++ ieiKi/ix̂i/ix̂  

).1())1(1()11( /iiPiK/iiP ++−=++  

This algorithm was tested with various inputs and compared with the EKF algorithm. Improvement of 

estimation with comparison of sum of squared errors is about 31% in average. Change of disturbance 

variances did not influence essentially the result. The Unscented Kalman Filter (UKF), too, can 

provide good accuracies, comparing with EKF [23]. However, UKF is based on a set of trial points, 

and thus cannot be considered as a global approximation. Moreover, it does not work well with nearly 

deterministic systems and needs more computation than the EKF. In comparison, computational cost 

of MOD-EKF is comparable with that of EKF. Particle filter depends on an initial guess of the prior 

distribution and it is sensitive to the initial values [7]. Consequently, recovery from poor initial guess 

needs much more measurements. Besides, in consequence of limited number of particles, the obtained 

result is often less accurate than that of obtained with MOD-EKF or even EKF. However, the 

accuracy can be increased as necessary by increasing the number of particles, but the computation 

may become expensive. 

Example 3: 

This example concerns robust stochastic nonlinear tracking control design with the original nonlinear 

equations. Assume an unknown plant where the true plant model is given with (63), (64), (65). Let the 

model structure to the design be 

1 . 2 

1 . 0 

  . 8 
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 . 2 
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),((1)(1)1( 2 iwi)ubixaix ++=+                                                                                                        (74) 

).1()1()1( +++=+ inixiy                                                                                                                    (75) 

where a1, a2 are parameters. The motivation for selection of the (74), (75) model may be the easy 

manageability and the fact that arbitrary accuracy can be achieved with polynomials, although high 

degree polynomials may be numerically unstable [15]. To the solution first the model parameters are 

identified; this can be done e.g. as shown in [11]. Various former investigations ([11], etc.) prove that 

the optimum solution is two – stage optimization based one. Consequently, for optimization the PI  
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22i
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                                                                                            (76) 

is used. In (76) r(j) is the reference and λis control weight. First optimum tracking is computed with 

the model. However, output of the plant is different. The error is fed back through the negative inverse 

of the model to the input of the plant, forcing the plant output nearer to the model output. Simulations 

show that an additional K feedback gain, determined through trials, may improve the solution. The 

model output estimation was achieved with the algorithm shown in Example 2, although MV – NOF 

may also be used. To computation of the right inverse of the model, the model input is expressed with 

model variable estimates, and the estimated output is forwarded with one step. With OSTT from  

0
)(

2i
1i =



 +
+

iu

F
                                                                                                                                           (77) 

the next control signal can be computed in knowledge of u(i). The initial control signal may be 

estimated from some considerations, e.g. from one – stage optimization. Completing the computations, 

we get 
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             (78) 

1)DER( +i  was numerically approximated to the simulation. The correction on the input of the plant 

can be computed as  

./b/iix̂a/iix̂yKiucorr 1))11(1-)11()1(i()1( 2++++−+−=+                                                         (79) 

To the simulation (78) and (79) was used. Various investigations have been done through simulations. 

If process parameters are a=0.2 and b=0.5, the parameter estimator finds minimum at a1=0.463 and 

b1=0.563. If λ=0.5, the control is unstable without feedback. The control is unstable for a=0.3 and 

b=0.6, too, without feedback, but it becomes stable with feedback in both cases, making possible 

robust stability. However, deterioration of the process output is about 45% , based on comparison of 

sum of error squares on a finite horizon. Accuracy of tracking may be improved for processes of  time 

varying parameters if the model parameters are identified in real time, resulting in robust performance. 

Optimum value of feedback gain is about K≈1.5. The simulations show that better tracking accuracy 

can be achieved with two –  stage control  then with one – stage one, and with MOD –EKF instead of 

EKF. 

6. CONCLUSION 

The paper presents methods for nonlinear state estimation by way of nonlinear state evolution 

prediction and correction. A predictor with the name MISLINPRED has been developed for state 

evolution computation. This predictor can estimate future states in several steps assuming finite 

virtual intersample points, while the M-operator makes estimates in one step assuming ∞ intersample 

points. The finite or infinite intersample point assumption gives possibility for intersample state 

estimation, too. Simulation shows that in the case of assumed ∞ intersample points, accuracy of 
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prediction is better than in case of assumed finite intersample points. Correction is achieved through 

optimization on a finite horizon. With suitable selection of the performance index, minimum variance 

nonlinear filtering may be approximated for a class of nonlinear plants. Moreover, MISLINPRED or 

the M-operator can be used in the EKF algorithm for prediction of future states, instead of the EKF 

predictor. Simulation shows that accuracy of estimation improves in this case. Similar or better 

accuracy can be achieved with optimization on a finite horizon, with the advantage that sphere of 

applicability is larger. The paper shows that analytical solution of robust nonlinear stochastic tracking 

problems is possible with the original nonlinear model and with the presented estimator for a class of 

nonlinear plants. The solution is optimum for the model with the given estimation method and is 

working efficiently for the plant. 
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