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Abstract: The subject of graph theoretic algorithms is as old as graph theory itself, which is usually regarded 

as having started with Euler’s famous solution of the problem of the seven bridges of Konigsberg. 

Over the last three decades there has been substantial increase in the study of algorithmic graph theory. Many 

projects involving graphs even in pure graph theory itself, involve algorithms.  

Most of the real life problems when transformed into graph problems exhibit some special properties. This has 

given rise to special classes of graphs such as interval graphs, permutation graphs, circle graphs, circular-arc 

graphs, etc. 

In this paper, we present a method for finding a minimum weight independent neighborhood set (MWINS) of an 

interval graph by using a directed network. 
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INTRODUCTION 

Consider a graph G (V, E). This graph is said to be an interval graph if there is a one-one 

correspondence between the vertex set V and the interval family I in such way that two vertices of G 

are joined by an edge in E if and only if their corresponding intervals in I intersect. i.e if i = [ai , bi] 
and j = [aj , bj] then i and j intersect means aj < bi or ai < bj.  

The neighborhood of a vertex v in G is defined as the set of vertices adjacent with v (including v) and 

is denoted by ndb [v]. A subset S of V in G is called a neighborhood set of G if G = 
Sv

  < nbd [v] > 

where < nbd [v] > is the vertex induced sub graph of G. A neighborhood set with minimum 
cardinality is called a minimum neighborhood set and the cardinality of such a set is defined as the 

neighborhood number of G.  

Each vertex of G is assigned a real number called its weight. The weights are assigned arbitrarily to 
the vertices of G. The weight of a set S is the sum of the weights on its elements. A neighborhood set 

of G with a minimum weight is called a minimum weight neighborhood set. If the neighborhood set 

with minimum weight is independent, then it is called a minimum weight independent neighborhood 

set.  

 An algorithm for finding a minimum weight independent neighborhood set and the necessary 

concepts for execution of the algorithm are given as follows.  

 Let min (i) denote the smallest interval in nbd [i]. If B is any subset of V then low (B) is 
defined as the interval with minimum weight in B. Define NI [i] = j  if  bi < aj   and there doesn’t exist 

an interval k such that bi < ak < aj. If there is no such j then define NI [i] = null. 

Define Next (i) = low { nbd[min ( NI[i] )] \ nbd [i] } and  

 Next (i) = null if NI[i] = null. 

 First we augment I with two dummy intervals say, Io and In+1 where  

Io = [ao,  bo] and In+1 = [an+1 ,  bn+1] such that  
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Let I1 = I  Io,  In+1. As in I the intervals in I1 are also indexed by increasing order of their right end 

points, namely bo  b1 ….. bn+1. 

For convenience, we denote I0 by 0 and In+1  by  n+1.        

We now construct a directed network D (N, L) associated with G. For its nodes we take those 
intervals in I1 which are not properly contained within other intervals. Because if there is an interval j 

which contains another interval i, then the minimum weight independent neighborhood set containing 

i can be changed to MWINS \ i   j . 

 The lines in L are partitioned into two disjoint sets L1 and L2 such that L = L1  L2 and L1  

L2 = .  

The lines in L1 are defined as follows. For j  D (N, L) there is a directed line (0, j) between 0 and j 
that belongs to L1 if and only if there is no interval h such that b0 < ah < bh < aj. Similarly there is a 

directed line (j, n+1) between j and n+1 that belongs to L1 if and only if there is no interval h such that 

bj < ah < bh < an+1. This gives scope to join the intervals 0 and n+1 to other intervals in I and all such 
joined directed lines belong to L1. 

 Next the lines in L2 are defined as follows. For i, j  D (N, L), there is a directed line (i, j) 
between i and j that belongs to L2 if and only j = Next (i).    

Now the following algorithm finds a minimum weight independent neighborhood set of an 

interval graph. 

ALGORITHM: MWINS-IG 

Input  :     Interval family I = {1,2……n}. 

Output  :     Minimum weight independent neighborhood set in G.  

Step 1   :     Construct a directed network D (N,L). 

Step 2  :     Find a minimum weight directed path P from node 0 to n+1   in D (N, L). 

Step 3 :    The nodes of P forms a minimum weight independent neighborhood set. 

Step 4  :    End. 

Illustration  

 Let us illustrate the construction of a directed network and the method of finding a minimum 

weight independent neighborhood set.   
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Fig. 1. Interval Family 
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Fig.2. Interval Graph 
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Let Wt (1) =4 Wt (2) = 6 Wt (3) = 8 Wt (4) = 1 

 Wt (5) = 6 Wt (6) = 2 Wt (7) = 3 Wt (8) = 4 

 Wt (9) = 2 Wt (10) = 5 

nbd [1] = {1,2,3}             min (1) = 1
  

nbd [2] = {1,2,3,4}  min (2) = 1

  
nbd [3] = {1,2,3,4,5,6} min (3) = 1  

nbd [4] = {2,3,4,5,6}              min (4) = 2

  
nbd [5] = {3,4,5,6,7}               min (5) = 3

  

nbd [6] = {3,4,5,6,7,8}   min (6) = 3  

nbd [7] = {5,6,7,8,9,10}   min (7) = 5  
nbd [8] = {6,7,8,9,10}   min (8) = 6  

nbd [9] = {7,8,9,10}  min (9) = 7

  
nbd [10] = {7,8,9,10}             min (10) =7 

 NI [1]  = 4 

 

NI [2]  = 5 

 

NI [3]  = 7 

 

NI [4]  = 7 

 

NI [5]  = 8 

 

NI [6]  = 9 

 

NI [7]  = null 

 

NI [8]  = null 

 

NI [9]  = null 

 

NI [10]  = null 
 

Next (1)  = low {nbd[min (NI[i])] \ nbd[i]} 

  = low {nbd[min (NI[1])] \ nbd[1]} 

  = low {nbd[min (4)] \ nbd[1]} 

  = low {nbd [2] \ nbd[1]}= low {{1,2,3,4} \ {1,2,3}} 

       = low {4} = 4 

Next (2)  = low {nbd[min (NI[2])] \ nbd[2]} 

  = low {nbd[min (5)] \ nbd[2]} 

  = low {nbd [3] \ nbd[2]}= low {{1,2,3,4, 5, 6} \ {1,2,3, 4}} 

       = low {5, 6} = 6 

Next (3)  = low {nbd[min (NI[3])] \ nbd[3]} 

  = low {nbd[min (7)] \ nbd[3]} 

  = low {nbd [5] \ nbd[3]}= low {{3,4,5,6,7}\{1,2,3,4, 5, 6}} 

       = low {7} = 7 

Next (4)  = low {nbd[min (NI[4])] \ nbd[4]} 

  = low {nbd[min (7)] \ nbd[4]} 

  = low {nbd [5] \ nbd[4]}= low {{3,4,5,6,7} \ {2,3,4,5,6}} 

       = low {7} = 7 
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Next (5)  = low {nbd[min (NI[5])] \ nbd[5]} 

  = low {nbd[min (8)] \ nbd[5]} 

  = low {nbd [6] \ nbd[5]}= low {{3,4,5,6,7,8} \ {3,4,5,6,7}} 

       = low {8} = 8 

Next (6)  = low {nbd[min (NI[6])] \ nbd[6]} 

  = low {nbd[min (9)] \ nbd[6]} 

  = low{nbd[7]\nbd[6]}= low {{5,6,7,8,9,10}/{3,4,5,6,7,8}} 

                         = low {9,10} = 9 

Next (7)  = null, since NI [7] = null. 

Next (8)  = null, since NI [8] = null. 

Next (9)  =  null, since NI [9] = null. 

Next (10)  =  null, since NI [10] = null. 

Now dummy intervals 0 and n+1 are augmented to I.   
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Fig. 3. Interval Family, I1 = I  { 0, n+1 } 

Directed Network D (N, L) is constructed as follows. 

N = {0,1,2,3,4,5,6,7,8,9,10,11}  

L= L1  L2  
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Fig. 4. The directed network D (N, L) 

In the D (N, L) of the above example, observe that directed paths from node 0 to node 11 are P1 = (0, 

3, 7, 11), P2 = (0, 1, 4, 7, 11) and P3 = (0, 2, 6, 9, 11). The weights on these paths are respectively 11, 
8, and 10. Hence (0, 1, 4, 7, 11) is a minimum weight directed path which corresponds to a minimum 

weight independent neighborhood set namely 1, 4, 7 of the interval graph with weight  

RESULTS 

Lemma 1: if i and k are any two intersecting intervals and j is any interval such that i < j < k then j 
intersects k. 

Proof : Since the intervals are labeled in the increasing order of their right endpoints,  i < j < k  

implies that bi < bj < bk. Now i intersects k implies that  

ak < bi. Hence ak < bi < bj < bk . This implies that j intersects k.  
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Lemma 2: For any directed line (0, j) L1 where j is any interval of , the  intervals between 0 and j 

belong to nbd [j]. 

Proof : Let (0 , j)  L1 .  By the definition of the lines in L1, there is no interval h such that bo <ah <bh 

<aj. Therefore the intervals between 0 and j belong to nbd[j]. 

The proof of the following lemma follows on similar lines to that of Lemma 2. 

Lemma 3 : For any directed line ( j, n+1)  L1 where j is any interval of I, the intervals between j and 
n+1 belong to nbd [j]. 

Thus it is clear by lemmas 2 and 3 that if there is a directed line  

(i, j)  L1 then the intervals between i and j are adjacent with i or j. 

Lemma 4:  For any directed line (i, j)  L2 the intervals between i and  
j belong to nbd [i] or nbd [j]. 

Proof : Let (i, j) L2. Then j = Next (i). Let h be any interval between i and j. Then the following 

cases arise. 

Case1: Suppose h intersects i. In such case h  nbd [i]. 

Case 2: Suppose h intersects min (NI[i]) and does not intersect i. Then  

h  nbd[min (NI[i])] and h   nbd[i]. So h  {nbd[min (NI(i))] \ nbd[i]}. Since j is the element with 

minimum weight in nbd[min (NI [i])] and the intervals are labeled in the increasing order of their right 

endpoints,  

it follows that h must intersect j. That is h  nbd[j].  

Case 3 : Assume that h does not intersect neither i nor min( NI[i]). Then either i < h < min (NI[i]) or 

min(NI[i]) < h < Next(i).   

Suppose i and min (NI[i]) intersect. Then by Lemma 1, h and min (NI[i]) intersect. Suppose min 

(NI[i]) and Next (i) intersect. Then again by Lemma 1, h must interesect Next (i).  Hence our 

assumption that h does not intersect neither i nor min(NI[i]) does not arise.  

Case 4 : Suppose h intersects j. Then clearly h  nbd [j].  

Thus for all possibilities, the intervals between i and j belong to nbd[i] or nbd[j].  

Lemma 5 : If i, j are any two intervals in I such that j = Next (i), then i and j are non-adjacent. 

Proof :  By the definition of Next (i), the proof follows immediately. 

Theorem 1: If P is a directed path between the nodes 0 to n+1 in  

D (N, L) then the vertices in P other than 0 and n+1 correspond to an independent neighbourhood set 

of an interval graph. 

Proof:  Let P be a shortest directed path from node 0 to n+1 in D. Define  

S = {i : node i appears in P, i  0, i  n+1}. For each directed line (i, j) in P, by Lemma 4 it follows 

that all intermediate intervals i+1, i+2… j-1 between i and j belong to nbd [i]  nbd [j]. Hence all 

intermediate intervals between the intervals in S belong to 
Sji 


,

 < nbd [i]  nbd [j] >.  Since the 

intervals in S correspond to the nodes in path P, the intervals in between 0 and the first interval in S as 

well as the intervals in between the last interval in S and n+1 also belong to   


inbd
Si

, by 

Lemmas 2 and 3. Thus all the vertices in G are exhausted by the vertices in the neighbourhoods of the 

nodes in S. That is  

V (G) =  inbd
Si
 . But by Lemma 5, < {i…j} >  <  nbd [i]  nbd [j]  > where i, j S. Therefore 

Sji 


,
< {i…j} >   inbd

Sji


,
   jnbd . Since  V(G) =  


inbd

Si
, it follows that G = 

 


inbd
Si

. Thus S is a neighborhood set of G. By Lemma 6 the nodes in S are non-adjacent. 

Therefore S forms an independent neighborhood set of G. 
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Theorem 2 : A minimum weight directed path P in D (N,L) corresponds to a minimum weight 

independent neighborhood set of an interval graph. 

Proof : Proof  follows immediately by Theorem 1.  

CONCLUSION 

In this article we found an algorithm to find minimum weight independent neighbourhood set 

of interval graphs using a directed network. Also we proved some results on directed 

network. Finally we conclude that the minimum weight directed path P in D (N, N) 

corresponds to a minimum weight independent neighbourhood set of interval graph. 
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