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Abstract 

This paper explores some nonlinear systems of singular partial differential 

equations written in the form ( ) ( ,,,, UxtfUxtUDt t
A ζ+Λ=  ) .UDt x

A  Under 

an assumption on ,Λ  unique solvability theorems are provided in the space of 
functions that are holomorphic in x on an open set, differentiable with respect to 
t on a real interval ] ]r,0  and extending to a continuous function at .0=t  The 
studied systems contain Fuchsian systems. 

Introduction 

Consider a system of differential equations ( ),, UtfUDt t =k  where k  

is an integer 2≥  and f is holomorphic in a neighbourhood of { } .0 C×  We 

know that such a problem generally does not have analytic solution, see, 
for example, [2, 3, 9, 13]. Any formal solution belongs to a Gevrey class of 
order ,1>  we could refer to [6, 7, 8, 12] among others. The purpose of this 
paper is to investigate nonlinear systems of the type 



PATRICE PONGÉRARD 32

( ) ( ),,,,, UDtUxtfUxtUDt x
A

t
A ζ+Λ=   (0.1) 

where A is a real diagonal matrix, ( ) ( )CNxt M∈Λ ,  and f is a function 

which is continuous with respect to t in a real interval [ ]0,0 r  and 

holomorphic in the remaining variables. This regularity assumption also 
appears in [1, 4, 14, 15]. The linear parts of our equations are irregular at 

0=t  in the sense of [5]. However, we are interested in solutions 
extending continuously at .0=t  Under a reasonable assumption on ,Λ  
we show that ( )1.0  has a unique solution ( ) ( )xtUxt ,, 6  holomorphic in 

x on an open set, differentiable with respect to t on a real interval ] ]r,0  

and continuous on [ ].,0 r  To achieve our statement, we first invert the 

operator ( ),0,0Λ−t
ADt  which then leads us to a fixed point problem. 

We prepare some estimations that allow to apply the contraction 
mapping principle. Our main results are Theorem 1.1 and Theorem 1.4. 

Partially holomorphic system 

We will make use of the following notations: 

( ) ,,,,,, 1
j

jt
n

n xDtDxxxt
∂
∂=

∂
∂=∈=∈ C…R  

{ } ( ) .,,,,,...,2,1,0 1
1

1
1 nnj

n

j

n
n DDD ααα

=

=α=α∈αα=α= ∑ "… NN  

1. Statement of Results 

Given an interval ,R⊂I  an open set ,nC⊂Ω  a Banach space E 

and an integer ,0 ∞≤≤ k  we denote by ( )EI ;, Ω×ωkC  the algebra of 

functions EIu →Ω×:  such that for ,0 k≤≤ l  the partial derivative 

EIuDl
t →Ω×:  exists, is continuous and for any ,It ∈  the mapping 

( ) ExtuDx l
t ∈Ω∈ ,6  is holomorphic. It is easily checked, using 

Cauchy’s integral formula, that this space is stable by differentiation 
with respect to x and that we have 
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.0,anyfor k≤≤∈α= αα luDDuDD nl
t

l
t N  

When ,C=E  the previous space will be simply denoted by ( )., Ω×ω IkC  

Let us consider a system of partial differential equations of the form 

( ) ( ) ( ) ( ( ) ( ) ( ) ( )),,,,,,,,, xtUDtxtUxtfxtUxtxtUDt x
A

t
A ζ+Λ=  (1.1) 

in which ( )NuU ,,u1 …=  is the unknown, ( )NaaA ,,diag 1 …=           

is a diagonal matrix with real coefficients ( ) „ƒ Niia ,1∈  that are all ,1≥         

Λ  is an upper triangular matrix of order N whose coefficients are 

functions of ( ) ( )NN
n uuUxt ζζ≡ζ×∈ ,,,, 11 …CR  where each iζ  is a 

function of ( ) nxt CR ×∈,  satisfying ( ) ,00,0 =ζi  UDt x
A  denotes the 

nN-tuple (( ) ) fuDt njNiij
ai ,,1,1 „ƒ„ƒ ∈∈  is a function of the variables ,R∈t  

( ) (( ) ) „ƒ„ƒ„ƒ njNiij
N

Nii
n zzyyx ,1,1,1 ,, ∈∈∈ =∈=∈ CC  .nNC∈  

We assume there are 00 >r  and an open neighbourhood 0Ω  (resp., 0O ) 

of the origin in ( )nN
z

N
y

n
x CCC ×.,resp  such that the coefficients of ,Λ  like 

the functions ,iζ  belong to [ ]( )00
,0 ,0 Ω×ω rC  and 

([ ] ( ) ).;,0 000
,0 Nrf COC ×Ω×∈ ω  

Let Z  be the zero set of the polynom ( ) ( )( ).0,0det Λ−λ≡λ IP  

Theorem 1.1. Suppose Z  is included in the half-plane .0<λeℜ  
Then, there exist ] ]0,0 rr ∈  and an open neighbourhood 0Ω⊂Ω  of the 

origin in n
xC  such that system (1.1) has a unique solution ( ] ] ;,0,1 Ω×∈ ω rU C  

) ([ ] )NN r CC ;,0,0 Ω×ωC∩  and necessarily ([ ] ).;,0,0 N
t

A rUDt CΩ×∈ ωC   

Suppose all ,0≥ia  then Theorem 1.1 can be extended as follows. 
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Let I  denote the set of „ƒ Ni ,1∈  such that 1≥ia  and assume 

I\,1 „ƒ N  is not empty. Suppose 

( ) .for1andfor00,0 II ∈/≡ζ∈=ζ ii ii   (1.2) 

For each ,\,1 I„ƒ Ni ∈  let iw  be a holomorphic function on .0Ω  We 

consider system (1.1) under (1.2) with the initial conditions 

( ) ( ) .\,1for,0 I„ƒ Nixwxu ii ∈=   (1.3) 

Impose 

( ) .0ifonly00 == iix awD   (1.4) 

The set I  is uniquely written as 

{ } .1with,, 211 Niiiii pp ≤<<<≤= ……I  

Then, we associate with the matrix ( ) ,,1 Njiij ≤≤λ=Λ  the square sub-

matrix of order p 

( ) ( ) .~
,1, plii l <<λ=Λ=Λ kkIIM  

Let us name Z~  the zero set of the polynom ( ) ( ( )).0,0~det~ Λ−λ≡λ IP  We 

then have the following result: 

Theorem 1.2. Suppose Z~  is included in the half-plane .0<λeℜ  

Then, there exist ] ]0,0 rr ∈  and an open neighbourhood  0Ω⊂Ω             

of the origin in n
xC  such that the problem (1.1)-(1.2)-(1.3) has a        

unique solution ( ] ] ) ([ ] )NN rrU CC ;,0;,0 ,0,1 Ω×Ω×∈ ωω CC ∩  and so  

([ ] ).;,0,0 N
t

A rUDt CΩ×∈ ωC  

Here is an example about this theorem. 
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Example 1.3. For all ( ) 2, C∈ba  and ( ) ,, 2R∈βα  there is 0>r  and 

an open neighbourhood Ω  of the origin in xC  such that the problem 

[ ( )]

[ ( )]

( )












=

∂∂+++=

∂∂++++−=

β

α

,0,0

,1

,1

2

1
2

222

21211
2

xu

xutubuuDt

xutxuauuuDt

t

t

 

has a unique solution ( ) (] ] ) ([ ] )2,02,1
21 ;,0;,0, CC Ω×Ω×∈ ωω rruu CC ∩  

as a result ( ) ([ ] ).;,0, 2,0
21

2 CΩ×∈ ω ruDtuDt tt C  

Now we turn our attention to a system of the form: 

( ) ( ) ( ) ( ( ) ( ) ( ) ( )),,,,,,,,, xtUDtxtUxtfxtUxtxtUDt x
a

t
a ζ+Λ=  (1.5) 

where a is a positive real number and Λ  is a square matrix of order N 

whose coefficients belong to the space ([ ] ).,0 00
,0 Ω×ω rC  We are then 

able to state the following result. 

Theorem 1.4. (1) If ,10 <≤ a  take ( )1,,1 …≡ζ  and let NW C→Ω0:  

be an holomorphic function (with ( ) 00 =WDx  only when 0=a ). Then, 

there exist ] ]0,0 rr ∈  and an open neighbourhood 0Ω⊂Ω  of the origin 

in n
xC  such that system (1.5) with the initial data ( ) ( ),,0 xWxU =               

has a unique solution (] ] ) ([ ] )NN rrU CC ;,0;,0 ,0,1 Ω×Ω×∈ ωω CC ∩  

and ([ ] ).;,0,0 N
t

a rUDt CΩ×∈ ωC  

(2) If 1≥a  and if the zero set of the polynom ( )( )0,0det Λ−λλ I6  is 

included in the half-plane ,0<λeℜ  then, there exist ] ]0,0 rr ∈  and an 

open neighbourhood 0Ω⊂Ω  of the origin in n
xC  such that system (1.5) 

has a unique solution ( ] ] ) ([ ] )NN rrU CC ;,0;,0 ,0,1 Ω×Ω×∈ ωω CC ∩  

and ([ ] ).;,0,0 N
t

a rUDt CΩ×∈ ωC  
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Remark 1.5. When ,1=a  we obtain a more general system of 
equations than a Fuchsian system; indeed, we do not need to take 

( ) txti =ζ ,  but we simply have ( ) .00,0 =ζi  Recall ([10, 11]) that in the 
Fuchsian case we have already studied nonlinear equations in spaces of 
holomorphic functions. 

2. Reformulation 

In order to prove Theorem 1.1, we first transform the problem. 

By writing ( ) ,0 E+Λ=Λ  where ( )0Λ−Λ≡E  satisfies all the same 
assumptions as ,ζ  we may suppose that Λ  is an upper triangular 
constant matrix, namely, 

( ) ( ) .if0where,,1 ijijNNjiij <=λ∈λ=Λ ≤≤ CM   (2.1) 

Furthermore, 

.,,1for0 Nie ii …=<λℜ   (2.2) 

Next, we will need the following result: 

Let C∈λ≥ ,1a  and let P  be the elementary operator 

.λ−≡ t
aDtP  

Lemma 2.1. Suppose .0<λeℜ  Let 0>r  and let Ω  be an open 

neighbourhood of the origin in .n
xC  Then, for every ([ ] ),,0,0 Ω×∈ ω rv C  the 

equation vu =P  has a unique solution (] ] ) ([ ] ).,0,0 ,0,1 Ω×Ω×∈ ωω rru CC ∩  

In addition, ([ ] )Ω×∈ ω ruDt t
a ,0,0C  with ( ) .0,0 =xuDt t

a  This solution 

is defined by 

( ) ( ) ( ) ( ) ( )
( )

( )








=

>
−=ϕϕ≡=

−
λϕ−

λ− ∫
.1ln

,11,,,,

1

0
1

aift

aifa
t

twheredexvtextvxtu

a

a

t
τ

τ
τ

τ
P  

(2.3) 

Moreover, vDuD αα = 1P  for any .nN∈α  
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Proof. Let us start with the uniqueness. Suppose (] ] )Ω×∈ ω ru ,0,1C  

([ ] )Ω×ω r,0,0C∩  satisfies .0=uP  Let .Ω∈x  Since ( ) ,attD −=ϕ  the 

derivative of the mapping ( ) ( )textut λϕ−,6  is equal to zero on ] ],,0 r  so 

there exists C∈xc  such that 

( ) ( ) ] ].,0for, rtecxtu t
x ∈≡ λϕ  

This function has a finite limit at 0=t  only if 0=xc  because 

.lim
0

−∞=ϕ  It follows that 0≡u  on [ ] .,0 Ω×r  Concerning the existence, 

we shall prove that the formal solution (2.3) is of class 

(] ] ) ([ ] ).,0,0 ,0,1 Ω×Ω× ωω rr CC ∩  Let ∆  be an open polydisk such that 

;Ω⊂∆  denote 

[ ]
.max

,0
vM

r ∆×
=  

The formula (2.3) can be written equivalently 

( ) ( ) ( )
( )

( )
.,,

1

0
σ

σ
σ=

σλϕ−
λϕ ∫ d

t
extvtextu a

t
t  (2.4) 

We first consider the case .1>a  Then, 

( ) ( ) ( )
,0

0→

ϕλ−λϕ−
→=

ta

te

a

t

t
e

t
e ℜ

 

and we may set 

[ ]

( )
.max

,0 ara
ec
τ

τ

τ

λϕ−

∈
≡  

The mapping ( ) ] ] ] ] ( )
( )

( )a
t

t
extvrxt
σ

σ∆××∈σ
σλϕ−

,,01,0,, 6  is continuous, 

holomorphic with respect to x and bounded by .aMc  Thus, from (2.4), we 

have (] ] ).,0,0 Ω×∈ ω ru C  Now we show that u has a unique continuous 
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extension to a function of the space ([ ] ).,0,0 Ω×ω rC  Let .Ω∈b  

Considering 

( )
( )

,1
0

λ−=
λϕ−

λϕ ∫ τ
τ

τ
dee a

tt  

we notice that 

( ) ( ) ( ) ( ) ( )[ ]
( )

.,0,,0,
0

τ
τ

τ
τ

debvxvebvxtu a

tt
λϕ−

λϕ −=λ+ ∫  

Let .0>ε  There exists 0>δ  such that: let ( ) [ ] Ω×∈ rxt ,0,  with δ≤t  

and δ≤− jj bx  for ,1 nj ≤≤  then we have 

( ) ( ) ( ) ,,0, ελ−≤− ebvxtv ℜ  

therefore, 

( ) ( ) ( ) ( ) ( )
( ) ( )

,,0,
0

ε=ελ−≤λ+
ϕλ−

ϕλ ∫ τ
τ

ℜ
τℜ

ℜ deeebvxtu a

ette  

and the statement follows with 

( ) ( ) .,,0,0 Ω∈∀λ−= xxvxu   (2.5) 

We next consider the case .1=a  Then (2.4) is reduced to the well-known 
formula 

( ) ( ) ,,, 1

1

0
σ

σ

σ
=

+λ∫ dxtvxtu  (2.6) 

where the mapping ( ) ] ] [ ] ( ) C∈
σ

σ
∆××∈σ

+λ 1
,,01,0,, xtvrxt 6  is 

continuous, holomorphic with respect to x and bounded by the integrable 

function .1+λσσ M6  It directly results that ([ ] )Ω×∈ ω ru ,0,0C  with 

(2.5) anew since 

( ) ( ) ( ) .,,0,0,0 1

1

0
Ω∈∀λ−=σ

σ
=

+λ∫ xxvdxvxu  
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In all cases, we naturally have vDuD α−α = 1P  for any .nN∈α  If 
] ],,0 rt ∈  then the partial derivative of (2.3) exists and is given by 

( ) ( ) ( )[ ],,,, xtvxtutxtuD a
t +λ= −  

which leads to (] ] ) ([ ] )Ω×∈Ω×∈ ωω ruDtru t
a ,0,,0 ,0,1 CC  with 

( ) 0,0 =xuDt t
a  seen (2.5); further, vu =P  on [ ] .,0 Ω×r  This completes 

the proof of our lemma.   

Now we can consider the system of differential equations: 

( ) ( ) ( ),,,, xtVxtUxtUDt t
A +Λ=   (2.7) 

where Λ  is a matrix satisfying (2.1)-(2.2) and ( )NvvV ,,1 …=  is 

assumed to be of class ([ ] ).;,0,0 Nr CΩ×ωC  For every ,,1 „ƒ Ni ∈  denote 

.iit
a

i Dt i λ−≡P  

Then (2.7) is written as 

.1,
1

Nivuu ijij

N

ij
ii ≤≤+λ= ∑

+=

P   (2.8) 

Given ,,1 „ƒ Ni ∈  for every ,1,1 „ƒ +−∈ iNp  we set 

{ ( ) }.;,,, 211 p
p

p
p
i iNiG γ<<γ<γ=∈γγ=γ= "… „ƒ  

The cardinal of p
iG  is equal to the number of ( )1−p -combinations from 

,,1 „ƒ Ni +  that is to say ( ).1
iN

p
−
−  From Lemma 2.1, one has NNN vu 1−= P  

and, by finite induction, 

.andwhere, 11
1

1

1

1
11 ppll

p
i

vVQcVQcu
p

lG

iN

p
i γ

−
γ

−
γγγγ

−

=
γγγ

∈γ

+−

=

=λ==
+∏∑∑ PP D"D  

 (2.9) 
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These considerations and Lemma 2.1 prove the following result. 

Lemma 2.2. Problem (2.7) has a unique solution ( ) ∈= NuuU ,,1 …  

(] ] ) ([ ] )NN rr CC ;,0;,0 ,0,1 Ω×Ω× ωω CC ∩  and ([ ] )Ω×∈ ω ruDt it
ai ,0,0C   

with ( ) 0,0 =xuDt it
ai  for any .,1 „ƒ Ni ∈  Furthermore, each iu  is a finite 

linear combination of up to iN −2  terms of the form 

.1,1,,,, 2
111

2
„ƒ„ƒ +−∈∈γγγ

−
γ

−
γ

− iNpandNiwherev pi pp
…D"DD PPP  

(2.10) 

Denoting by VR  the solution of problem (2.7), we define an 

endomorphism R  of the vector space ([ ] ).;,0,0 Nr CΩ×ωC  If we set 

( ) ( ) ( ),,,, xtUxtUDtxt t
A Λ−=U  i.e., ,UR=U  problem (1.1) is 

converted into ,UU F=  where F  denotes the operator 

( ) ( ) ( ( ) ( ) ( ) ( )).,,,,,, xtDtxtxtfxt x
A UUU RRF ζ=  (2.11) 

The next section aims to apply the contraction mapping principle to F  in 
a Banach space that we are going to introduce. 

3. Framework and Estimates for the Operator F  

Given a majorant function { }ξ∈φ +R  with a radius of convergence 

,0>≥ R  let ρ  be a parameter 1≥  and let 0>r  be such that .Rr <ρ  

Definition 3.1. We define 

{ },;
1

,, rRxx j

n

j

n
rR ρ−<∈=Ω≡Ω ∑

=
ρ C  

and rR ,,, ρφ≡ BB  by the set of functions ([ ] )Eru ;,0,0 Ω×∈ ωC  for which 

there exists 0≥c  such that 
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[ ] ( ) ( ) .where,,,,0
1

j

n

j
xtcxturt ∑

=

=ξξ+ρφ∈∀    (3.1) 

This precisely means ( ) ( )0,0, tcDtuD E ρφ≤ αα  for all nN∈α  and all 

[ ].,0 rt ∈  

Obviously, B  is a vector subspace of ([ ] )Er ;,0,0 Ω×ωC  and the 

smallest 0≥c  for which (3.1) is satisfied is a norm on B  denoted by 

rR ,,, ρφ⋅  or simply ⋅  if no confusion is possible. 

Lemma 3.2. The space B  is a Banach space. 

Proof. Let ( )nU  be a Cauchy sequence in B  and let .0>ε  There 

exists N∈N  such that, for all Nnn ≥′,  and all [ ],,0 rt ∈  

( ) ( ) ( )., ξ+ρεφ− ′ txtUU nn    (3.2) 

If K is a compact subset of ,Ω  then we have 

[ ]
,max

,0 KEnnKr
CUU ε≤− ′

×
 

where ( )j
n

jKxK xrC ∑
=∈

+ρφ=
1

max  is +∞<  since the mapping ( +ρφ rx 6  

)j
n

j
x∑

=1
 is continuous on .Ω  This shows that ( )nU  is a Cauchy sequence 

in ([ ] )Er ;,0,0 Ω×ωC  so it converges compactly to a function ω∈ ,0CU  

([ ] );;,0 Er Ω×  a fortiori, for all [ ]rt ,0∈  and ,nN∈α  the sequence 

( ( ))nn tUD 0,α  converges to ( ).0,tUDα  By letting n′  tend to infinity into 

(3.2), we get B∈−UUn  and ,ε≤−UUn  therefore B∈U  and ( )nU  

converges to U in .B   
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The following lemma will be useful to study the forthcoming 
operators. 

Let 1≥a  and .0<λ  If ,0>t  we set 

( ) ( )
( )

.,
0

N∈∀=
λϕ−

λϕ ∫ kk
k τ

τ
τ

τ
deetS a

tt  (3.3) 

Recall that .010 >λ−≡S  When ,∗∈ Nk  given Lemma 2.1, kS  

extends continuously to 0 with ( ) .00 =kS  

Lemma 3.3. There exists ( ) 000 >λ= cc  such that, for all 0≥t  

( ) .kk
k N∈∀≤ ,0tctS   (3.4) 

There exists ( ) 0,, 011 >λ= racc  such that, for all [ ]0,0 rt ∈  

( ) .k
k

k

k N∈∀
+

≤
+

,1
1

1
tctSta  (3.5) 

Proof. Since ,kk t≤τ  we have (3.4) with .00 Sc =  To show (3.5), we 

notice that 

( ) ( ) ( )
,1111 2

1
0

1

0
τ

τ
ττ

τ
τ

ττ
de

t
etdea

a

t

a

t

a

t λϕ−
+

λϕ−+λϕ−

∫∫ +
λ+

+
=







+
− k

k
k

kkk
 (3.6) 

as long as .1 a≥+k  We then consider integers ,1−> ak  i.e.,  a≥k  

which is the smallest integer larger than or equal to a; since λ  is < 0, it 
ensues that 

( )  
 

.01
1where,1

1
>

−+
+

≡
+

≤
+

aa
actctSta

k

k

k  

Let 1−≤ ak  be an integer. From (3.4), one has, for all [ ]0,0 rt ∈  

( ) .0where,1
1

00
1

1
0

1
00 >=′

+
′≤≤≤ −

+
−++ aaaa arcctcrtctctSt

k

k
kk

k  

The result follows with ( ).,max1 ccc ′=   
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Remark 3.4. When ,1=a  then ( )λ= 1,2max1c  does not depend 

on 0r  and (3.5) is valid for all .0≥t  Otherwise, one can see that 

( ) .lim +∞=
+∞→

tS
t k  

Here are the estimates involving operator 1−P  of Lemma 2.1. 

Lemma 3.5. There exists ( ) 0,, 0 >λ= racc  such that, for ,0>R  

Rr <ρ  and ([ ] ),,0,0 Ω×∈ ω ru C  the function ([ ] )Ω×∈ ω− ru ,0,01 CP  

satisfies 

[ ] ( ) ( ) [ ] ( ) ( ),,,,0,,,0 1 ξ+ρφ∈∀⇒ξ+ρφ∈∀ − tcxturttxturt  P  

(3.7) 

and 

[ ] ( ) ( ) [ ] ( ) ( ).,,,0,,,0 11 ξ+ρφρ∈∀⇒ξ+ρφ∈∀ −− tcxtutrttDxturt a  P  

(3.8) 

Proof of (3.7). For all [ ]rt ,0∈  and ,nN∈α  one has 

( ) ( ) ( ) ( ) ,!
00,

0
k

k
k

k

φρ=ρφ≤
α+∞

=

αα ∑ DttDtuD  

and from Lemma 2.1, ,11 uDuD α−−α = PP  hence 

( ) ( ) ( ) ,!
00,

0

1
k

k

k
k

k

φρ≤
α+∞

=

−α ∑ DtStuD P  

where kS  is defined by (3.3) in which we substitute λeℜ  to .λ  The 
assertion is confirmed by (3.4).  

Proof of (3.8). As above, we get in this case 

( ) ( ) ( ) ( ) ( )
( )!1

0
!

00,
1

1

0

1
1

1

0

1
+

φρρ≤φρ≤
α++

+
∞

=

−
α++∞

=

−α ∑∑ kk

k
k

k

k

k
k

k

DtcDtSttutD aaP  

from (3.5), and the conclusion follows.   
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We then consider the expressions URζ  and .UDt x
A R  Let us denote 

by iR  the i-th component of .R  From now on, we will take NE C=  and 

( ) .max,,
11 iNiEn uuu

≤≤
=…  

Lemma 3.6. There exists ( )( ) 0,0,0, 0 >Λ= rAcc  such that, for 

RrR <ρ> ,0  and ,B∈U  we have, for every „ƒ„ƒ njNi ,1,,1 ∈∈  

[ ] ( ) ( ),,,,0 ξ+ρφ∈∀ tUcxtUrt i R   (3.9) 

and 

[ ] ( ) ( ).,,,0 1 ξ+ρφρ∈∀ − tUcxtUDtrt ij
ai R   (3.10) 

Proof. From Lemma 2.2, this result must be established with terms 
like 

( ),9.3for111
2 pp

ui γ
−
γ

−
γ

− PPP D"DD  

and terms like 

( ),10.3for111
2 pp

i uDt ji
a

γ
−
γ

−
γ

− PPP D"DD  

where „ƒ Np ,1∈  and .,1,,2 „ƒ Np ∈γγ …  Let ,B∈U  then ( )xtu p ,γ  

( )ξ+ρφ tU  for all [ ].,0 rt ∈  Using (3.7) p-times, we obtain (3.9). 

Otherwise, one has ( ) ( )ξ+ρφγ tDUxtuD pj ,  for all [ ].,0 rt ∈  

Applying (3.7) ( ) times-1−p  and (3.8) once, we get (3.10).  

Let us specify hereafter the majorant function we shall employ. 

Given ,0>R  we consider the entire serie (2.1) of [15] 

( ) ( )
( )

,
1 2

0

1

+

ξ
=ξφ ∑

∞

=

−

p
RK

p

p
 (3.11) 
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where the constant 0>K  is such that .2 φφ   Recall that φ  also 

satisfies the following properties. Let ,0>η  there exists ( ) ,0>η= cc  

such that ( ) φ•−ηη cRR   and necessarily 

( ) ( ) [ ].,0allfor rttctR
R ∈ξ+ρφ

ξ+ρ−η
η    (3.12) 

Lemma 3.7. Let ([ ] )Ω×∈ ω ru ,0,0C  and Rc ′<≤0  be such that 

( ) ( )ξ+ρφ tcxtu ,  for all [ ],,0 rt ∈  then u is bounded by c on [ ] ,,0 Ω×r  

the function ( )uRR −′′  belongs to the space ([ ] )Ω×ω r,0,0C  and 

( ) ( ) [ ].,0, rtallfortcR
cKxtuR

R ∈ξ+ρφ






−′
+

−′
′

  (3.13) 

Concerning the operator ,F  we are going to set up 

Proposition 3.8. There is 00 >a  such that, for all ,0aa ≥  the 

following holds: there exist ] ] ] ]00 ,0,1,,0 rrRR ∈≥ρ∈  with Rr <ρ  

such that the mapping F  is a strict contraction in the closed ball ( )aB ,0′  

of the Banach space .B  

Let us observe now that we can write 

( ) ( ) ( ) ( )iii
Ni

yyzyzyxtgzyxtfzyxtf ′−′′=′′− ∑
∈

,,,,,,,,,,,
,1 „ƒ

 

( )
( ) ( ),,,,,, ,,,

,1,1,
jijiji

nNji
zzzyzyxth ′−′′+ ∑

×∈ „ƒ„ƒ

  

(3.14) 

where 

([ ] ).;,0, 0000
,0

,
N

jii rhg COOC ××Ω×∈ ω  

For ,0>R  we set 

{ },max;
,1

Rxx jnj
n

R <∈=∆
∈ „ƒ

C  
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and 

{( )
( )

}.max,max;, ,,1,1,,1
RzRyzyO jinNjiiNi

nNN
R <<×∈=

×∈∈ „ƒ„ƒ„ƒ
CC  

We fix, once and for all, 0,1 0 >>η R  and 0>′R  such that 00 Ω⊂∆ηR  and 

.0O⊂′RO  Consequently, the functions ([ ] ( ) )N
RR Orf C;,0 00

,0
′η

ω ×∆×∈ C  

and ([ ] ( ) )N
RRRjii OOrhg C;,0, 00

,0
, ′′η

ω ××∆×∈ C  are bounded, say by a 

constant .0>M  

We put 

( )
( ) [ ]

( ) ( ) ] ] ] ].,0,0,for,max, 00

,1
,0,

RrRrxtRr i

Ni
rxt R

×∈ζ=ε

∈
∆×∈ η
„ƒ

 

This function has limit 0 as ( )Rr,  tends to ( ).0,0  From Cauchy’s 

inequalities and Lemma 3.7, one has 

( ) ( ) ( ) ( ) ( ),,,, ξφεη
ξ−η

ηεζ RrcR
RRrxti   

and, given ( ) ( )ξ+ρφξφ t  (since 0φ  and Rr <ρ ), it comes 

( ) ( ) ( ) ( ) [ ]( ).,1,,0allfor,, „ƒ NirttRrcxti ∈∈ξ+ρφεηζ    (3.15) 

Similarly, we have 

( ) ( ) ( ) ,,,,
, ijjiii

zR
R

yR
RtMczyxtf

−′
′

−′
′

ξ+ρφη ∏∏  (3.16) 

and 

( ) ( ) ( )
iii

jii yR
R

yR
RtMczyzyxthg

′−′
′

−′
′

ξ+ρφη′′ ∏,,,,,, ,  

 .
, ijijji

zR
R

zR
R

′−′
′

−′
′

× ∏   (3.17) 
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Proof of Proposition 3.8. Let 0>a  and B∈U  be such that 
.aU ≤  In what follows, any constant 0≥  that does not depend on the 

parameters rRa ,,, ρ  will be denoted by c. From (3.9)-(3.15) and (3.10), 

we have 

( ) ( ) ( )

( ) ( )





ξ+ρφρ

ξ+ρφεζ

− .,

,,,

1 tacxtUDt

taRrcxtU

ij
a

ii

i 



R

R
 (3.18) 

Then, under a condition like 

( ) ,2and2, 1 RacRaRrc ′≤ρ′≤ε −   (3.19) 

it follows from (3.16) and Lemma 3.7 that UF  is well-defined on 

[ ] ,,0 Ω×r  belongs to ([ ] )Nr C;,0 0
,0 Ω×ωC  and 

[ ] ( ) ( ).,,,0 ξ+ρφ∈∀ tcxtUrt F  

This proves the existence of a 00 >a  sufficiently large ( ),0 ca >  such 

that 

( )( ) ( ) .allfor,0,0 0aaaBaB ≥′⊂′F   (3.20) 

Let ( ).,0 aBU ′∈′  As explained for f, if (3.19) is satisfied, we also have 

( ) ( ).,,,,,, , ξ+ρφ′′ζζ tcUDtUUDtUxthg x
A

x
A

jii RRRR  

Thence, from (3.14) and Lemma 3.6, we obtain 

( ( ) ) ., 1 UURrcUU ′−ρ+ε≤′− −FF  

Let .0aa ≥  We first take 1≥ρ  such that 21 Rac ′≤ρ−  and .211<ρ−c  

Next, we choose ( ) ] ] ] ]00 ,0,0, RrRr ×∈  with Rr <ρ  (for instance 

ρ= 2Rr ), such that ( ) 2, RaRrc ′≤ε  and ( ) .21, <ε Rrc  Thus we 

have (3.19), (3.20) and ( ( ) ) .1, 1 <ρ+ε −Rrc  We get the desired result 

therefrom.   
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4. Proof of Theorem 1.1 

By Proposition 3.8, the mapping F  has an unique fixed point 

( ) ([ ] )NraBU C;,0,0 ,0
0 Ω×⊂′∈ ωC  and (] ] )NrUU C;,0,1

1 Ω×∈= ωCR  

([ ] )Nr C;,0,0 Ω×ωC∩  is a solution of (1.1). Let us show the uniqueness 

of this solution. Let (] ] ) ([ ] )NN rrU CC ;,0;,0 ,0,1
2 Ω×Ω×∈ ωω CC ∩  be 

a solution of (1.1), then ([ ] )N
t

A rUUDtU C;,0,0
22 Ω×∈Λ−=′ ωC  is a 

fixed point of .F  There is 01 >R  such that ,1 Ω⊂∆ηR  so, from Cauchy 

inequalities, .,1,, 1 rRU φ∈′ B  We take ( ).,max ,1,,0 1 rRUaa φ′=  Using 

Proposition 3.8 again, there exist ] ] ] ]rsRS ,0,1,,0 1 ∈≥ρ∈  with 

Ss <ρ  such that UU ′=  on [ ] ,,0 ,, sSs ρΩ×  i.e., on [ ] Ω×s,0  since Ω  is 

a connected open set. We shall prove that the real number 

] ] [ ]{ }Ω×=∈≡ tUUrtt ,0on;,0max 210  

is equal to r. For this purpose, we assume rt << 00  and we set 

( ) ( ) ( ).,, 0201 xtUxtUxW ==  This function W is holomorphic on Ω  and 

the functions iU  belong to ([ ] ).;,0
,1 Nrt CΩ×ωC  Thus, writing 

( ) ( ) ( ) ( ),,, 0 xtttxWxtU ii U−+=  

we define uniquely (] ] ) ([ ] )NN
i rtr CC ;,;,0 0

,0,1 Ω×Ω×∈ ωω CCU ∩  and 

we find that these iU  are solutions of 

(( ) ) ( ) ( ( ) WDtttWxtfttIDttt x
A

t
A ,,, 000 UUU −ζ+ζ+−Λ=+−  

( ) ),0 Ux
A Dttt −+   (4.1) 

namely, 

(( ) ) ( ) ( )( ),,,, 000 UUU xt DttttxtgIDtt −−=+−  (4.2) 

where ([ ] ) 00
,0 ,;, OOOC ⊂×Ω×∈ ω Nrtg C  is an open neighbourhood 

of the origin in nN
z

N
y CC ×  defined, from (3.19), at least for 
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( )
( )

.2maxand,2max ,,1,1,00,1
RzRrRy jinNjiiNi
′<ε′<

×∈∈ „ƒ„ƒ„ƒ
 (4.3) 

By translation, (4.2) is reduced to 00 =t  with ([ ] )Ntrg C;,0 0
,0 OC ×Ω×−∈ ω  

that is to say to a system like (1.1). As above, there exist ] ]0,0 trs −∈′  

and an open neighbourhood Ω⊂Ω′  of the origin in n
xC  such that 1U  

and 2U  coincide on [ ] ,,0 Ω′×′s  hence 1U  and 2U  coincide on 

[ ] ,, 00 Ω′×′+ stt  i.e., on [ ] ., 00 Ω×′+ stt  This allows us to conclude that 

.0 rt =    

5. Proof of Theorem 1.2 

Suppose ( )NuuU ,,1 …=  is a function satisfying Theorem 1.2. Let 

,\,1 I„ƒ Ni ∈  we define uniquely (] ] )Ω×∈ ω rui ,0~ ,1C  by the relation 

( ) ( ) ( ).,~, 1 xtutxwxtu i
a

ii i−+=   (5.1) 

Let us show that iu~  belongs necessarily to ([ ] ).,0,0 Ω×ω rC  As 

[ [,1,0∈ia  we observe that 

( ) ( ) ( ) ([ ] ),,0where,,,0, ,0
0

Ω×∈==− ω−∫ ruDtvdxvxuxtu it
a

ii
at

ii ii Cτττ  

therefore, 

( ) ( ) ( ) .,,
1

0
1 σσσ+= −− ∫ dxtvtxwxtu i

aa
ii ii  (5.2) 

If ∆  is an open polydisk such that ,Ω⊂∆  the mapping ( ) ] ]1,0,, ∈σ xt  

[ ] ( ) C∈σσ∆×× − xtvr ia ,,0 6  is continuous, holomorphic with respect to 

x and bounded by ,iaM −σ  where 
[ ]

.max
,0 ir

vM
∆×

=  It follows that the last 

integral belongs to ([ ] );,0,0 Ω×ω rC  ultimately we have (] ] )Ω×∈ ω rui ,0~ ,1C  

([ ] ).,0,0 Ω×ω rC∩  
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Denoting by if  the i-th component of f, system (1.1) is also written in 

the form 

( ) ( ) ( ) ( ( ) ( ) ( )),,,,,,,,,
1

xtUDtxtUxtfxtuxtxtuDt x
A

ijij

N

j
it

ai ζ+λ= ∑
=

 

.,1 „ƒ Ni ∈   (5.3) 

Injecting (5.1), we obtain 

( ) ( ) ,for,,,,~1 I
II

∈ζ++λ+λ= −

∈/∈
∑∑ iUDtUxtfutwuuDt x

A
ij

a
jij

j
jij

j
it

a ji  

(5.4) 

and 

( ) ( ) ( ),,,,~~1~ 1 UDtUxtfutwuuautD x
A

ij
a

jij
j

jij
j

iiit
j ζ++λ+λ+−= −

∈/∈
∑∑
II

 

.when I�∈/i   (5.5) 

Now we set 

( )




 ∈

==
not,if1

,if
~where,~,,~diag~

1

Iia
aaaA

i
iN…  

and ( )NuuU ~,,~~
1 …=  with ii uu ≡~  for .I∈i  Point out that ω∈ ,1~ CU  

(] ] ) ([ ] ).;,0;,0 ,0 NN rr CC Ω×Ω× ωC∩  We denote by ( ) Njiij ≤≤λ= ,1
~M  

the square matrix of order N, where the ijλ~  are functions of ( ) nxt CR ×∈,  

defined by 

( )

( )













≠∈/

=∈/−

∈λ

=λ

.andif0

,andif1

,if,

,~

ijj

ijja

jxt

xt i

ij

ij

I

I

I�

 (5.6) 
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Using a matrix representation and expanding along columns, we note 
that 

( )( ) ( ) ( )[ ].1~0,0det −−λλ±=−λ ∏
∈/

i
i

aPI
I

M  (5.7) 

Let 

( ) ( ) ( ( ) ),,where,,1 jjij
j

iNii yxwyxggg +λ== ∑
∈/

∈
I

„ƒ  

and 

( ) ( )




 ∈

=δδ=δ
−∈

.notif

,if0
where,

1,1
iaiNii

t

i
t

I

„ƒ  

Equations (5.4) and (5.5) can then be written as the following system: 

( ) ( ).,,,~,~~~
UDtUxtfUxgUUDt x

A
t

A ζ+δ+= M  

Regarding f, by putting ( )NwwW ,,1 …=  with 0≡iw  for ,I∈i  one 

has 

( ) ( ) ( ),~,~,,~,~,,,,,
~~

UDtUxthUDtWDtUWxtfUDtUxtf x
A

x
A

x
A

x
A  ≡++ζ=ζ  

where 

( ) ( )




 ∈

==
−∈

not,if

,if0
,,

1,1
iaiNii

t

i
xt

I
 „ƒ  

and, since Wζ  and WDt x
A  vanish at the origin of nCR ×  thanks to 

(1.2) and (1.4), there exist 00 >′r  and an open neighbourhood 00 Ω⊂Ω′  

(resp., 00 OO ⊂′ ) of the origin in n
xC  (resp., nN

z
N
y CC × ) such that 

([ ] ( ) ).;,0 000
,0 Nrh COC ′×Ω′×′∈ ω  After all, letting ( ) ( )yxgzyyxtf ,,,,, =  

( ) Uzyxth ~,,,,+  satisfies 

( ).~,~,~,,~~~ ~~
UDtUUxtfUUDt x

A
t

A δ+= M  
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Considering the proof of Theorem 1.1, it can also be written for such a ,~f  

hence we have existence and uniqueness for (] ] ) ∩NrU C;,0~ ,1 Ω×∈ ωC  

([ ] )Nr C;,0,0 Ω×ωC  which completes the proof of Theorem 1.2.   

6. Proof of Theorem 1.4 

As explained in Section 2, matrix Λ  can be considered constant. 

Since the diagonal matrix N
aIt  commutes with any matrix of order N, a 

fortiori, with an invertible one, it follows, after changing the notations, 
that it is enough to study system (1.1) for an upper triangular constant 

matrix ( ).C+∈Λ NT  By applying Theorem 1.2 for such a matrix and for 

ia  all equal to a, we achieve our expected result.  
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