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Abstract

This paper explores some nonlinear systems of singular partial differential
equations written in the form tADtU =A@, x)U + f(¢, x, CU, tADxU). Under
an assumption on A, unique solvability theorems are provided in the space of
functions that are holomorphic in x on an open set, differentiable with respect to
t on a real interval ]0, r] and extending to a continuous function at ¢ = 0. The

studied systems contain Fuchsian systems.

Introduction

Consider a system of differential equations tthU = f(¢, U), where k
is an integer > 2 and f is holomorphic in a neighbourhood of {0} x C. We

know that such a problem generally does not have analytic solution, see,
for example, [2, 3, 9, 13]. Any formal solution belongs to a Gevrey class of
order > 1, we could refer to [6, 7, 8, 12] among others. The purpose of this

paper is to investigate nonlinear systems of the type
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32 PATRICE PONGERARD
tADU = A(t, x)U + f(t, x, CU, t4D,U), (0.1)

where A is a real diagonal matrix, A(t, x) € My (C) and f is a function
which is continuous with respect to ¢ in a real interval [0, ] and

holomorphic in the remaining variables. This regularity assumption also
appears in [1, 4, 14, 15]. The linear parts of our equations are irregular at
t =0 in the sense of [5]. However, we are interested in solutions

extending continuously at ¢ = 0. Under a reasonable assumption on A,
we show that (0.1) has a unique solution (¢, x) = U(¢, x) holomorphic in
x on an open set, differentiable with respect to ¢ on a real interval ]0, r]
and continuous on [0, r]. To achieve our statement, we first invert the
operator tADt — A(0, 0), which then leads us to a fixed point problem.

We prepare some estimations that allow to apply the contraction

mapping principle. Our main results are Theorem 1.1 and Theorem 1.4.
Partially holomorphic system

We will make use of the following notations:

teR,x=(x,..,x,)eC", D,=—, D; =—,

n

N={0,1,2 .}, 0=, a,) e N" Jo| = Y a;, D* = D} .- D"

j=1
1. Statement of Results

Given an interval I ¢ R, an open set Q c C”", a Banach space E
and an integer 0 < k < o, we denote by C*®(I x Q; E) the algebra of
functions u : I x Q — E such that for 0 <[ < k, the partial derivative
Dtlu : I xQ — E exists, is continuous and for any ¢ € I, the mapping

xeQm- Dtlu(t, x) e E is holomorphic. It is easily checked, using

Cauchy’s integral formula, that this space is stable by differentiation

with respect to x and that we have
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D/D“u = D*Dlu for any o. e N", 0 < < k.
When E = C, the previous space will be simply denoted by Ck’“’(I x Q).
Let us consider a system of partial differential equations of the form
tADU(, x) = Alt, x)U(t, x) + f(¢, x, (CU) (@, x), ¢ADU) (¢, x)), (1.1)

in which U = (uy,...,uy) is the unknown, A = diag(ay, ..., ay)

is a diagonal matrix with real coefficients (q;); e,y that are all > 1,

A is an upper triangular matrix of order N whose coefficients are

functions of (¢,x) e RxC", (U = (¢yuy,...,Cyuy ) where each ¢; is a
function of (¢, x) € R x C" satisfying ¢;(0, 0) =0, t2D,U denotes the
nN-tuple ((¢“'Dju; )i, ny)jeqnys 18 @ function of the variables ¢ € R,
xeC" y =i, € eV, z = ((2ij ien, M) jer,m € c.

We assume there are ry > 0 and an open neighbourhood Q (resp., Oy )
of the origin in C%(resp., (Cg,v x C™V) such that the coefficients of A, like

the functions ¢;, belong to C%®([0, ry]x Q) and
fec”([0, n]x (@9 x 0p); V).
Let Z be the zero set of the polynom P(A) = det(AI — A(0, 0)).

Theorem 1.1. Suppose Z is included in the half-plane Rek < 0.
Then, there exist r € 0, ry] and an open neighbourhood Q < Qg of the

origin in C" such that system (1.1) has a unique solution U e C>®(]0,r]x ;

cMync®e(o, r]x @ €V and necessarily tAD,U e c®©([0,r]x @; CV).

Suppose all @; > 0, then Theorem 1.1 can be extended as follows.
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Let Z denote the set of i € [1, N] such that @; >1 and assume
[1, NI\ Z 1is not empty. Suppose
£;(0,0)=0forieZ and ¢; =1fori ¢ Z. (1.2)
For each i €1, NJ\ Z, let w; be a holomorphic function on Qgy. We
consider system (1.1) under (1.2) with the initial conditions
u;(0, x) = w;(x) forie[l, NI\ Z. (1.3)
Impose
D,w;(0) = 0 only if a; = 0. (1.4)
The set Z is uniquely written as

I={i1,...,ip} with 1§ll <i2 <...<ip < N.

Then, we associate with the matrix A = (1), j<n» the square sub-

matrix of order p
A= MI’I(A) = (}‘ikil )1<k,l<p'

Let us name Z the zero set of the polynom P(A) = det(LI — A(0, 0)). We

then have the following result:

Theorem 1.2. Suppose Z is included in the half-plane Rel < 0.

Then, there exist r e |0, 5] and an open neighbourhood Q c Q
of the origin in CJ such that the problem (1.1)-(1.2)-(1.3) has a
unique solution U e c>(]0, r]x @ ¢V )N c%e([o, r]x @ €V) and so

t4D,U e c%([o, r]x O c).

Here is an example about this theorem.
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Example 1.3. For all (a, b) € C2 and (o, B) € R?, thereis r > 0 and

an open neighbourhood Q of the origin in C, such that the problem

t2Dyuy = —up + aug + [1 + xuy + Vi (duy / ox)],
VtDjug = bug + [1 + ug + t2(0uy [ 0x)P,

u9(0, x) = 0,

has a unique solution (1, us) € C(]0, r]x ;)N c%°([0, r]x Q; C?)

as a result (¢2Duy, VtDus) € €% ([0, r]x Q; C?).
Now we turn our attention to a system of the form:
t*DUE, x) = AR, x)U@E, x) + f(t, x, (CU) (&, x), D U)(, x)), (1.5)

where a 1s a positive real number and A is a square matrix of order N
whose coefficients belong to the space C»®([0, ry]x Qg). We are then

able to state the following result.

Theorem 14. 1) If 0 < a <1, take { = (1, ..., 1) andlet W : Qy — ch
be an holomorphic function (with D,W(0) = 0 only when a = 0). Then,

there exist r € |0, ry] and an open neighbourhood Q c Qg of the origin
in C} such that system (1.5) with the initial data U(0, x) = W(x),
has a unique solution U e C>°(]0, r]x @; cN)ync%e([o, r]x @; cN)
and t*D,U < c%([0, r]x @; CN).

(2) If a > 1 and if the zero set of the polynom A\ +— det(Al — A(0, 0)) is
included in the half-plane Rek < 0, then, there exist r € 10, ry]| and an
open neighbourhood Q c Qg of the origin in C} such that system (1.5)
has a unique solution U e c“°(]0, r]xQ; c¥)Nnce(o, r]xo; )

and t°D,U e c%([0, r]x o; CV).
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Remark 1.5. When a =1, we obtain a more general system of

equations than a Fuchsian system; indeed, we do not need to take
¢;(¢, x) =t but we simply have £;(0, 0) = 0. Recall ([10, 11]) that in the

Fuchsian case we have already studied nonlinear equations in spaces of

holomorphic functions.
2. Reformulation

In order to prove Theorem 1.1, we first transform the problem.

By writing A = A(0) + &, where £ = A — A(0) satisfies all the same
assumptions as {, we may suppose that A is an upper triangular

constant matrix, namely,

A = (}\'U )lSi,jSN € MN((C), where }\'U =01if ] <. (21)

Furthermore,
Rer; <0 for i=1,..., N. (2.2)
Next, we will need the following result:
Let a>21,AeC and let P Dbe the elementary operator
P =tD, — A
Lemma 2.1. Suppose Reh < 0. Let r >0 and let Q be an open
neighbourhood of the origin in C%. Then, for every v e c%e([o, r]x Q), the
equation Pu = v has a unique solution u < C>(]0, r]x Q)N c*°([0, r]x Q).

In addition, t*Dyu e C*°([0, r]x Q) with t*Du(0, x) = 0. This solution
is defined by

1-a
¢ —1o(T) r- 1
ult, x) = (Po)(, x)ze%p(t)j or, x) S—— dr, where ¢(t) = {1- a a1
0
T Int if a=1.

(2.3)

Moreover, D*u = P 'D%v for any o e N".
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Proof. Let us start with the uniqueness. Suppose u € C»©(]0, r]x Q)

Nc%e([o, r]x Q) satisfies Pu = 0. Let x € Q. Since Do(t) = ¢t™%, the

derivative of the mapping ¢ > u(t, x)e*® is equal to zero on ]0, r], so
there exists ¢, € C such that

ult, x) = cxem(t) for t e ]0,r]
This function has a finite limit at ¢ =0 only if ¢, =0 because
lién ¢ = —o. It follows that u = 0 on [0, r]x Q. Concerning the existence,

we shall prove that the formal solution (2.3) is of class
cte(o, r]x Q)N c®([0, r]x Q). Let A be an open polydisk such that

A < Q; denote

M = max ||
[0, 7]xA

The formula (2.3) can be written equivalently

e—kcp(ct)

ult, x) = tek‘p(t)'l.lv(ct, x) (2.4)
0

(ot)

We first consider the case a > 1. Then,

|e—7»<p(t)| _ o~ (Re2)o(?) o

t¢ t¢ t—>0
and we may set

le=0(7)]|
¢, = max .
Telo,r] L@

o o(ot)

The mapping (o, ¢, x) € ]0, 1]x ]0, r]x A = v(ct, x) is continuous,

(ot)
holomorphic with respect to x and bounded by Mc,. Thus, from (2.4), we

have u € €>®(]0, r]x Q). Now we show that « has a unique continuous
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extension to a function of the space C¥®([0, r]x Q). Let b e Q.

Considering
t ,~2(1)
oo
0 ¢

we notice that

e o(7)

ult, %) + (0, 5) /2 = &0 ; (., x) - v(0, b)] dr.

a
T

Let & > 0. There exists & > 0 such that: let (¢, x) € [0, r]x Q with || < &

and |x; - bj| <8 for 1 < j < n, then we have
oz, x) - v(0, b)) < —(Re L),
therefore,

t —(Re M)p(r)
u(t, x)+v(0, b) /2| < e(%ek)("(t)-’.o— (Re X)e#d'r =g,

T

and the statement follows with
u(0, x) = -v(0, x) /A, Vx e Q. (2.5)

We next consider the case a = 1. Then (2.4) is reduced to the well-known

formula

1
ult, x) = J O%do, 2.6)
(e}

v(ot, x)

IS 1
0_7»+1 c s

where the mapping (o,t, x)e€]0,1]x[0, r]xA

continuous, holomorphic with respect to x and bounded by the integrable
function ¢ > M /™1, It directly results that u e > ([0, r]x Q) with

(2.5) anew since

1
u(O,x):J. wdcz—v(&x)/k, Vx € Q.
0 o +



NONLINEAR SYSTEM OF SINGULAR PDE ... 39

In all cases, we naturally have D% = P 'D% for any o e N". If

t € ]0, r], then the partial derivative of (2.3) exists and is given by
Dyul(t, x) = t “[rult, x) + v(t, x)],

which leads to w e C"°(]0, r]xQ), t*Du € c¥([0, r]x Q) with

t*Du(0, x) = 0 seen (2.5); further, Pu = v on [0, r]x Q. This completes

the proof of our lemma. O

Now we can consider the system of differential equations:

tADU(t, x) = AU(t, x)+ V(t, x), 2.7)
where A is a matrix satisfying (2.1)-(2.2) and V = (v, ..., vy) 1is
assumed to be of class CO’O’([O, rlx Q; cN ). For every i € [1, NJ], denote

P; =t%D, — L.
Then (2.7) 1s written as
N
Pui = ) hyuj+v, 1<i<N. 2.8)
j=it1

Given i € [1, N], for every p € [1, N —i +1], we set
GP ={y=(y1, ... vp) eli, NIP;i=y1 <yg <- <7}

The cardinal of G? is equal to the number of (p —1)-combinations from

[ +1, N], that is to say (g__li). From Lemma 2.1, one has uy = P&lvN

and, by finite induction,

N-i+1 p-1
= = = -1 e -1
u; = Z Z cYQyV, where ¢, = - and QYV = Ph 0:r0 Pypvyp.
p:1 yEGip =1

2.9
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These considerations and Lemma 2.1 prove the following result.

Lemma 2.2. Problem (2.7) has a unique solution U = (uy, ..., uy) €
cteo, rlx o cV)ne®e(o, r]x @ V) and t%Du; € >0, r]x Q)
with t%Dyu;(0, x) = 0 for any i € [1, N]. Furthermore, each u; is a finite
2N—i

linear combination of up to terms of the form

lop 1l opl i —i
P; ”Pyz Pypvyp,where Y25 s Yp €li, NJand p € [1, N —i +1].

(2.10)

Denoting by RV the solution of problem (2.7), we define an

endomorphism R of the vector space C*°([0, r]x Q; CN). If we set
U, x) = tADtU(t, x)- AU, x), ie., U=R%, problem (1.1) is
converted into % = F%, where F denotes the operator

(Fw)(t, x) = (¢, x, CR%) (@, x), (t D, R%)(t, x)). (2.11)

The next section aims to apply the contraction mapping principle to F in

a Banach space that we are going to introduce.
3. Framework and Estimates for the Operator F
Given a majorant function ¢ € R, {¢} with a radius of convergence
> R > 0, let p be a parameter > 1 and let r > 0 be such that pr < R.

Definition 3.1. We define

n
Q=Qp,,=1{xeC" Z|x]| < R-pr},

j=1

and & = B, g, r by the set of functions u e c%([o, r]x Q; E) for which

there exists ¢ > 0 such that
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vt e [0, r], ult, x)<co(pt +&), where & = ij. (3.1)
=

This precisely means |D%u(t, 0|, < cD‘a‘cb(pt, 0) for all a € N" and all
t o, r].

Obviously, £ is a vector subspace of C>®([0, r]xQ; E) and the
smallest ¢ > 0 for which (3.1) is satisfied is a norm on % denoted by

[ - "¢,R,p,r or simply | - || if no confusion is possible.
Lemma 3.2. The space & is a Banach space.
Proof. Let (U,) be a Cauchy sequence in B and let ¢ > 0. There
exists N € N such that, forall n, n’ > N and all ¢ € [0, r],
(Un = Up) (¢, x)<ed(pt +&). (3.2)
If Kis a compact subset of Q, then we have

3z U = Uyl < €Cx,

n
where Cx = max ¢(pr + Z|x1|) is < +wo since the mapping x — ¢(pr +
xeK A

n

D |x;|) is continuous on Q. This shows that (U,) is a Cauchy sequence
=
in ¢%°([0, r]x Q; E) so it converges compactly to a function U e ¢%
([0, r]x Q; E); a fortiori, for all ¢ € [0, 7] and a € N”, the sequence
(DU, (t, 0)),, converges to D*U(t, 0). By letting n' tend to infinity into
(3.2), we get U, —U € B and |U, - U| < ¢, therefore U € B and (U,)

converges to Uin B. O



42 PATRICE PONGERARD

The following lemma will be useful to study the forthcoming

operators.

Leta>1 and A < 0. If ¢t > 0, we set

t —ho(T)
Si(t) = e“f’(”_[ o+ idn Vk e N. (3.3)
0 a

T

Recall that Sy =-1/%>0. When ke N*, given Lemma 2.1, S,
extends continuously to 0 with S;,(0) = 0.

Lemma 3.3. There exists ¢y = cg(r) > 0 such that, for all t > 0

S (t) < cot®, Vk e N. (3.4)
There exists ¢; = c;(a, A, y) > 0 such that, for all t € [0, ry]

k+1

t
a <
t Sk(t)—clk+1,

Vk e N. (3.5)

Proof. Since " < tk, we have (3.4) with ¢y = Sy. To show (3.5), we

notice that

a [t e o) thtl oholt) A [l g e 00
1- dr = Tt ——dr, (3.6
( k+1jjoT @ T k1 e +k+1I0T 24 7. (3.6)

as long as k+1 > a. We then consider integers k > a -1, ie., k> |a]

which is the smallest integer larger than or equal to a; since A is <0, it
ensues that
tk+1 La J +1

a <¢c—— =
tSk(t)_ckJrl, where ¢ [

al+1-a > 0.

Let k < a —1 be an integer. From (3.4), one has, for all ¢ € [0, rp]

k+1

I where ¢ = coard™! > 0.

t98,,(t) < cot®™F < cotF g < ¢

The result follows with ¢; = max(c, ¢’). O
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Remark 3.4. When a =1, then ¢; = max(2, 1/[2|) does not depend
on ry and (3.5) is valid for all ¢ > 0. Otherwise, one can see that

lim S (¢) = +o.
t—>+o0

Here are the estimates involving operator P! of Lemma 2.1.
Lemma 3.5. There exists ¢ = c(a, ,, ry) > 0 such that, for R > 0,

pr <R and u e C%?([0, r]x Q), the function P 'u e c®®([0, r]x Q)

satisfies
Vi e [0, r], ult, x)<dlpt+&) = Vielo,r], P lult, x)<chlpt +E£),

3.7

and
vt e [0, r], ult, x)<Di(pt +&) = Vtel0,r], t*Plult, x)<cp to(pt + ).
(3.8)

Proof of (3.7). For all ¢ € [0, r] and o € N”, one has
© Dk+\o¢\ 0
|D%utt, 0)f < Dor) = 3" (ot 280
k=0
and from Lemma 2.1, D*P 'y = P"'D%, hence
k+al
P u(t, 0)] < Zka 0200 ¢(°)

where S, is defined by (3.3) in which we substitute ReA to A. The

assertion is confirmed by (3.4).

Proof of (3.8). As above, we get in this case

~ 0 Dk+1+\a\ 0 s Dk+1+\a\ 0
|Data7) lu(t, O)l < Zpktask(t)% <ep IZ(Pt)k+1 TI;E()
= =0

from (3.5), and the conclusion follows. O
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We then consider the expressions CRU and tADx’RU. Let us denote
by R; the i-th component of R. From now on, we will take E = cV and
"(u’l’ tee u’n)"E = max |ull

1<i<N

Lemma 38.6. There exists ¢ = c(A, A0, 0), ry) > 0 such that, for
R >0,pr < R and U € &, we have, for every i € [1, N], j €[1, n]

vt e [0, r], R;UE x)<dU|d(pt +€), (3.9
and
vt e[0,r], t%D;RU, x)<cp [Uldlpt + &). (3.10)

Proof. From Lemma 2.2, this result must be established with terms
like

oploopl
Pit P, Pypuyp for (3.9),
and terms like
aGip-1_ p-1_..  plp.
thP e P, PprJqu for (3.10),
where p € [1, N] and yg, ..., v, € [1, N]. Let U € 4, then uyp(t, x)<
[Ull4(pt + &) for all ¢ e [0, r]. Using (3.7) p-times, we obtain (3.9).
Otherwise, one has Dju, (t, x)<|U|Dé(pt + &) for all t e [0, r].
Applying (3.7) (p —1)-times and (3.8) once, we get (3.10). O
Let us specify hereafter the majorant function we shall employ.
Given R > 0, we consider the entire serie (2.1) of [15]

o (E/RP
o) = K ;EEB? (3.11)
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where the constant K > 0 is such that ¢2 < ¢. Recall that ¢ also
satisfies the following properties. Let n > 0, there exists ¢ = c¢(n) > 0,

such that nR /(MR - )< c¢ and necessarily

#ﬁ;é)<c¢(pt +§&) for all ¢ € [0, r]. (3.12)

Lemma 3.7. Let u e C>®([0, r]xQ) and 0 <c < R' be such that
u(t, x)<cd(pt + &) for all t € [0, r], then u is bounded by c on [0, r]x Q,

the function R' | (R' — u) belongs to the space C%®([0, r]x Q) and

s (ke oo foranico ) @)

Concerning the operator F, we are going to set up

Proposition 3.8. There is ag > 0 such that, for all a > aq, the
following holds: there exist R € |0, Ry]|, p =1, r € ]0, ry] with pr < R
such that the mapping F is a strict contraction in the closed ball B'(0, a)
of the Banach space 2.

Let us observe now that we can write

ft, x, y,2)- flt, x, ¥, 2') = Z gilt,x, 5, 2,5, 2)(y; —¥)
ie[l, N]

+ Z i (%, 3,2, 5, 2) (25 — 21 )
(i, /)<, NIxI1, ]

(3.14)

where
0,0 . ~N
8, hi j € ([0, i x Qg x O x Og; CM).
For R > 0, we set

Ap = c"; | < R},
R ={v € C% max|a;| < R}
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and

Or = {(y, cN x oV, | < R, <R
g =100, 2) € X ig[[ll?l)if]]lyll (i,j)e[rfgljl\;]?x[l,n]]lzldl

We fix, once and for all, n > 1, Ry > 0 and R’ > 0 such that ZT]RO c Qg and

Op < Oy. Consequently, the functions f e C%* ([0, ry] (Anr, xOR'); c)

and g;, h; i € %°([0, 10]x(Aqr, X OR xOp ); CV) are bounded, say by a

i,J

constant M > O.

We put
g(r, R) = max _ |G;(¢ x)| for (r, R) e ]0, ry]x]0, Ry].
(t,x)e[O,r]xAnR
iell, N]

This function has limit 0 as (r, R) tends to (0, 0). From Cauchy’s

inequalities and Lemma 3.7, one has

Gilt, x)<elr, B) L p— < clnlelr, RW(E),

and, given ¢(&) < ¢(pt + &) (since ¢ >0 and pr < R), it comes
g;t, x)<c()e(r, R)p(pt +&) (for all t € [0, ], i € [1, N]).  (3.15)

Similarly, we have

fie, %, 3, 2) < oMot + O] [ [ [ s (3.16)
i L Y

and

R!

gl’ lj(t X, y’ <, y 2)<<C(n)M¢(pt+§)HR! y R!

G . (3.17)
H R -z; R zl]
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Proof of Proposition 3.8. Let a >0 and U € # be such that

U] < a. In what follows, any constant > 0 that does not depend on the
parameters a, R, p, r will be denoted by c. From (3.9)-(3.15) and (3.10),

we have

CiRiU(t7 x) < CS(Y’, R)G(I)(pt + é)7

(3.18)
t“D;R;U(t, x) < cp Lap(pt + E).
Then, under a condition like
ce(r, R)la < R'/2 and c¢pla<R'/2, (3.19)

it follows from (3.16) and Lemma 3.7 that FU is well-defined on
[0, 7] x ©, belongs to €% ([0, rp]x ; CV) and
vt e [0, r], FU({, x)<co(pt + E).

This proves the existence of a ag > 0 sufficiently large (ay > ¢), such
that
F(B'(0, a)) c B'(0, a) for all a > a. (3.20)

Let U' € B'(0, a). As explained for £, if (3.19) is satisfied, we also have
gi, b j(t, x, CRU, t*D,RU, (RU', t*D,RU") < ct(pt + &).
Thence, from (3.14) and Lemma 3.6, we obtain
|FU - FU| < e(er, R)+p™)[U - U
Let a > ay. We first take p > 1 such that ¢p™la < R'/2 and c¢p 1< 1/2.

Next, we choose (r, R) € |0, rp]x]0, Ry] with pr < R (for instance
r=R/2p), such that ce(r, R)Ja < R'/2 and ce(r, R) <1/2. Thus we

have (3.19), (3.20) and c(e(r, R)+ p ') < 1. We get the desired result

therefrom. O
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4. Proof of Theorem 1.1

By Proposition 3.8, the mapping F has an unique fixed point
U e B0, ap) = ¢%°([0, r]x @ CV) and U;= RU e ¢»(]0,7] x ;)
Nc%e(o, r]x ; €V) is a solution of (1.1). Let us show the uniqueness
of this solution. Let Uy e ¢»°(]0, r]x ; ¢V )N c%([o, r]x Q; CV) be
a solution of (1.1), then U’ = tADtUz — AUy € ¢%%([o, r]x & cN)is a
fixed point of F. There is R; > 0 such that Kn R <, so, from Cauchy
inequalities, U’ e % g, 1, We take a = max(ag, [U|,  ;,)- Using
Proposition 3.8 again, there exist S e |0, Rj],p >1,s € ]0,r] with
ps < S such that U = U’ on [0, s]x Qg,p, 5> 1€, 0N [0, s] x Q since Q is
a connected open set. We shall prove that the real number
to = max{t € |0, r]; U; = Uy on [0, t]x Q}
is equal to r. For this purpose, we assume 0 <i{; <r and we set
W(x) = U;(ty, x) = Us(tg, x). This function W is holomorphic on Q and

the functions U; belong to C¥®([ty, r]x Q; CV). Thus, writing
Ui(t, x) = Wx) + (¢ = 0)U; (2, x),

we define uniquely U; e ¢(]0, r]x Q; CV )N C%°([ty, r]x @ CV) and

we find that these U; are solutions of
tA((t —t0)D, + DU = At — to)U + f(t, x, CW + Lt — to U, tADW
A
+ 92t —tg)DU), (4.1)

namely,

(t —tg)D; + 1)U = g(t, x, (t —to)U, (t — tg)D,U), (4.2)

where g € C%°([tg, r]x Qx0; CN), © c Oy is an open neighbourhood

of the origin in (C]yv x (CZN defined, from (3.19), at least for
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ma;\;l]]|yi| < R'/ 2¢(ry, Ry) and R'/2. (4.3)

. ~ max |2, | <
iell, (i, )ell, NIx[1,n] ©

By translation, (4.2) is reduced to ¢, = 0 with g e C>®([0, r—ty]xQx0; CV)
that is to say to a system like (1.1). As above, there exist s’ € |0, r — (]

and an open neighbourhood Q' < Q of the origin in C} such that U,
and Uy coincide on [0, s']xQ', hence U; and U, coincide on
[tg, to + 8'1x Q, ie., on [ty, ty +s']x Q. This allows us to conclude that

tg =T. U
5. Proof of Theorem 1.2

Suppose U = (uq, ..., up) is a function satisfying Theorem 1.2. Let

i € [1, N]\ T, we define uniquely #; € c®(]0, r]x Q) by the relation
wi(t, x) = w;(x) + 179G (¢, x). (5.1)

Let us show that #; belongs necessarily to C®([0, r]x Q). As
a; € [0, 1], we observe that
u;(t, x)—u; (0, x) = .[; %y, (1, x)dT, where v; =t%“Du; e C%([0, r]x Q),
therefore,

1
w;(t, x) = w;(x) + £17% Io o %v;(ot, x)do. (5.2)

If A is an open polydisk such that A < Q, the mapping (o, t, x) € ]0, 1]
x [0, r]x A = o %uv(ot, x) € C is continuous, holomorphic with respect to

x and bounded by Mo %, where M = max |v;|. It follows that the last

[0,r]xA
integral belongs to C% ([0, r] x Q); ultimately we have ; € C*(]0, r]x Q)

Nec%e(o, r]x Q).
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Denoting by f; the i-th component of f, system (1.1) is also written in

the form
N
t“Dyu;(t, x) = Zkij(t, xuilt, x)+ fi(t, x, (CU)(, x), tADxU(t, x)),
=
1 €1,N]. (5.3)

Injecting (5.1), we obtain

taiDtui = Z KL]LL] + Z ?»U(w] + tliajljj)-i- fi(t, X, CU, tADxU), for i e 7,
jel jel

(5.4)

and

Dy = (a; =Dt + Y Mgy + Y diglwy + 8 i) + fi(t %, CU, t4DLU),
jeT

jel
when i ¢ 7. (5.5)
Now we set
- a; if i e I,
A = diag(ay, ..., ay ), where a; =
1 if not,
and U = (&, ..., iy) with & = u; for i e 7. Point out that U e c®

(10, r]x ; €V ync®e([o, r]x @; V). We denote by M = (Xij h<i, j<n

the square matrix of order N, where the Xij are functions of (¢, x) e R x C"

defined by
}‘ij(t’ x) if ] e,
it x) = {a; -1 if j¢Zand j=1i, (5.6)

0 if j¢Z and j #1.
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Using a matrix representation and expanding along columns, we note
that

det(\I — M(0, 0)) = ﬂ?(x)H[x —(a; - 1)). (5.7)
¢
Let
g =(8i)iep, N> Where g;(x, y) = Z:kij(wj(x)+ ¥i)»
jel
and
0 if i eZ,

8 = (8;);cp, ny» Where 3;(t) = P
1 not.

Equations (5.4) and (5.5) can then be written as the following system:
tAD,0 = MU + g(x, 80) + (¢, x, CU, tAD,U).

Regarding f, by putting W = (wy, ..., wy) with w; =0 for i € Z, one

has

f(t, %, LU, £ADU) = (t, x, CW + <0, tADW + tAD,T) = h(t, x, <0, tAD,T),

where

0 ifiel,
€= (ei)ie[[l,]\]]’ ei(t> x) =

7% if mnot,

and, since (W and tADxW vanish at the origin of R x C" thanks to
(1.2) and (1.4), there exist 7y > 0 and an open neighbourhood Qf < Q
(resp., Oy < Og) of the origin in C} (resp., (C]yv x(CZN) such that
he %[0, i5]x(Qp x 0 ); CV). After all, letting f(t, x, v, 3, 2) = g(x, ¥)

+h, x, 5y, 2), U satisfies

tAD,0 = MU + 7(t, x, 80, <0, tAD,0).
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Considering the proof of Theorem 1.1, it can also be written for such a }7,

hence we have existence and uniqueness for U e ¢»®(]0, r]xQ; ¢V )N

c%([o, r]x ©; CV) which completes the proof of Theorem 1.2. O

6. Proof of Theorem 1.4

As explained in Section 2, matrix A can be considered constant.

Since the diagonal matrix ¢l commutes with any matrix of order N, a

fortiori, with an invertible one, it follows, after changing the notations,

that it i1s enough to study system (1.1) for an upper triangular constant

matrix A € 7 §(C). By applying Theorem 1.2 for such a matrix and for

a; all equal to a, we achieve our expected result. O
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