Research Article
BibTex RIS Cite

Probing the Electro-Chemical and Thermal Properties of Polyaniline/MWCNT Nanocomposites

Year 2023, Volume: 10 Issue: 2, 493 - 504, 31.05.2023
https://doi.org/10.18596/jotcsa.1177040

Abstract

The tremendous interest for robust, clean energy storage devices to comprehend the growing needs of modern gadgets has led to exploration of materials having unprecedented electrochemical and interfacial properties. Here, the present study deals with the synergistic effects of multi walled carbon nanotubes and polyaniline nanocomposites on the electro-chemical and thermal properties for wide-range of applications. The microstructural, structural, and optical characterizations have been evaluated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and UV-Vis spectrophotometry. The thermal stability of the product was also studied through thermal gravimetric analysis (TGA) and the room temperature electrical conductivity was also measured. An exceptional enhancement in thermal stability and conductivity has been observed apparently due to interfacial properties of polyaniline (PANI) and multiwalled carbon nanotubes (MWCNTs). Further, in present study we are going to report a comparative analysis of thermal and electrical properties of PANI/MWCNT nanocomposites with different loadings of MWCNTs. The room temperature conductivity as calculated for 1%, 2%, 4% and 8% MWCNT loading is around 2.019, 3.075, 4.48, 8.73 S/cm respectively. The mechanism for thermal and electrical enhancements in PANI-coated MWCNT nanocomposites is also expounded.

Thanks

S.J.P would also like to acknowledge DST for providing the funding under INSPIRE-Fellowship Scheme (IF 160064).

References

  • 1. Khalil HA, Fizree H, Bhat A, Jawaid M, Abdullah C. Development and characterization of epoxy nanocomposites based on nano-structured oil palm ash. Composites Part B: Engineering. 2013;53:324-33.
  • 2. Jaymand M. Recent progress in chemical modification of polyaniline. Progress in Polymer Science. 2013;38(9):1287-306.
  • 3. Bhadra S, Khastgir D, Singha NK, Lee JH. Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science. 2009;34(8):783-810.
  • 4. Darwish M, Ahmed HM, Mansour D-EA, editors. Thermo-mechanical properties of LDPE/SiO 2 nanocomposites based on chemically functionalized SiO 2 nanoparticles. International Symposium on Electrical Insulating Materials (ISEIM); 2020: IEEE.  241-244.
  • 5. Abdel‐Gawad NM, El Dein AZ, Mansour DEA, Ahmed HM, Darwish MM, Lehtonen M. PVC nanocomposites for cable insulation with enhanced dielectric properties, partial discharge resistance and mechanical performance. High Voltage. 2020;5(4):463-71.
  • 6. Mansour D-EA, Abdel-Gawad NM, El Dein AZ, Ahmed HM, Darwish MM, Lehtonen M. Recent advances in polymer nanocomposites based on polyethylene and polyvinylchloride for power cables. Materials. 2020;14(1):66.
  • 7. Stejskal J, Gilbert R. Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and applied chemistry. 2002;74(5):857-67.
  • 8. Chiang JC, Macdiarmid AG. Polyaniline - protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals. 1986;13(1-3):193-205.
  • 9. Kobayashi T, Yoneyama H, Tamura H. Polyaniline film-coated electrodes as electrochromic display devices. Journal of Electroanalytical Chemistry. 1984;161(2):419-23.
  • 10. Genies EM, Boyle A, Lapkowski M, Tsintavis C. Polyaniline - a historical survey. Synthetic Metals. 1990;36(2):139-82.
  • 11. Macdiarmid AG, Chiang JC, Halpern M, Huang WS, Mu SL, Somasiri NLD, et al. Polyaniline - Interconversion of Metallic and Insulating Forms. Molecular Crystals and Liquid Crystals. 1985;121(1-4):173-80.
  • 12. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363(6430):603-5.
  • 13. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes - the route toward applications. Science. 2002;297(5582):787-92.
  • 14. Fischer JE, Dai H, Thess A, Lee R, Hanjani NM, Dehaas DL, et al. Metallic resistivity in crystalline ropes of single-wall carbon nanotubes. Physical Review B. 1997;55(8):R4921-R4.
  • 15. Wang Y, Chen Y, Wen Q, Zheng H, Xu H, Qi L. Electricity generation, energy storage, and microbial-community analysis in microbial fuel cells with multilayer capacitive anodes. Energy. 2019;189:116342.
  • 16. Zhang H, He B, Tang Q, Yu L. Bifacial dye-sensitized solar cells from covalent-bonded polyaniline–multiwalled carbon nanotube complex counter electrodes. Journal of Power Sources. 2015;275:489-97.
  • 17. Al-badri M, Albdiry M. Electrochemical performance of ternary s-GN/PANI/CNTs nanocomposite as supercapacitor power electrodes. Periodicals of Engineering and Natural Sciences. 2020;8(4):2484-9.
  • 18. Zou L, Lan C, Yang L, Xu Z, Chu C, Liu Y, et al. The optimization of nanocomposite coating with polyaniline coated carbon nanotubes on fabrics for exceptional electromagnetic interference shielding. Diamond and Related Materials. 2020;104:107757.
  • 19. Roy A, Ray A, Sadhukhan P, Naskar K, Lal G, Bhar R, et al. Polyaniline-multiwalled carbon nanotube (PANI-MWCNT): Room temperature resistive carbon monoxide (CO) sensor. Synthetic Metals. 2018;245:182-9.
  • 20. Wang CY, Mottaghitalab V, Too CO, Spinks GM, Wallace GG. Polyaniline and polyaniline–carbon nanotube composite fibres as battery materials in ionic liquid electrolyte. Journal of Power Sources. 2007;163(2):1105-9.
  • 21. Huang Y, Lu J, Kang S, Weng D, Han L, Wang Y. Synthesis and application of MnO2/PANI/MWCNT ternary nanocomposite as an electrode material for supercapacitors. Int J Electrochem Sci. 2019;14:9298-310.
  • 22. Maity D, Manoharan M, Kumar RTR. Development of the PANI/MWCNT Nanocomposite-Based Fluorescent Sensor for Selective Detection of Aqueous Ammonia. Acs Omega. 2020;5(15):8414-22.
  • 23. Huangfu Y, Ruan K, Qiu H, Lu Y, Liang C, Kong J, et al. Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Composites Part A: Applied Science and Manufacturing. 2019;121:265-72.
  • 24. Saeed MS, Seyed-Yazdi J, Hekmatara H. Fe2O3/Fe3O4/PANI/MWCNT nanocomposite with the optimum amount and uniform orientation of Fe2O3/Fe3O4 NPs in polyaniline for high microwave absorbing performance. Journal of Alloys and Compounds. 2020;843.
  • 25. Paul SJ, Gupta BK, Chandra P. Probing the electrical and dielectric properties of polyaniline multi-walled carbon nanotubes nanocomposites doped in different protonic acids. Polymer Bulletin. 2021;78:5667-83.
  • 26. Wu T-M, Lin Y-W. Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties. Polymer. 2006;47(10):3576-82.
  • 27. Phang SW, Tadokoro M, Watanabe J, Kuramoto N. Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes. Synthetic Metals. 2008;158(6):251-8.
  • 28. Endo M, Takeuchi K, Hiraoka T, Furuta T, Kasai T, Sun X, et al. Stacking nature of graphene layers in carbon nanotubes and nanofibres. Journal of Physics and Chemistry of Solids. 1997;58(11):1707-12.
  • 29. Zhang X, Zhang J, Liu Z. Tubular composite of doped polyaniline with multi-walled carbon nanotubes. Applied Physics A. 2005;80:1813-7.
  • 30. Konyushenko EN, Stejskal J, Trchova M, Hradil J, Kovarova J, Prokes J, et al. Multi-wall carbon nanotubes coated with polyaniline. Polymer. 2006;47(16):5715-23.
  • 31. Lefrant S, Baltog I, de la Chapelle ML, Baibarac M, Louarn G, Journet C, et al. Structural properties of some conducting polymers and carbon nanotubes investigated by SERS spectroscopy. Synthetic metals. 1999;100(1):13-27.
  • 32. Li Y, Peng H, Li G, Chen K. Synthesis and electrochemical performance of sandwich-like polyaniline/graphene composite nanosheets. European Polymer Journal. 2012;48(8):1406-12.
  • 33. Cochet M, Maser WK, Benito AM, Callejas MA, Martinez MT, Benoit JM, et al. Synthesis of a new polyaniline/nanotube composite: "in-situ" polymerisation and charge transfer through site-selective interaction. Chemical Communications. 2001(16):1450-1.
  • 34. Ghatak S, Chakraborty G, Meikap A, Woods T, Babu R, Blau W. Synthesis and characterization of polyaniline/carbon nanotube composites. Journal of Applied Polymer Science. 2011;119(2):1016-25.
  • 35. Pekdemir ME, Kök M, Qader IN, AYDOĞDU Y. Preparation and physicochemical properties of mwcnt doped polyvinyl chloride/poly (ε-caprolactone) blend. Journal of Polymer Research. 2022;29(4):109.
  • 36. Haruna H, Pekdemir ME, Tukur A, Coşkun M. Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. Journal of Thermal Analysis and Calorimetry. 2020;139:3887-95.
  • 37. Heeger AJ. Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials. Reviews of Modern Physics. 2001;73(3):681-700.
  • 38. Bhadra S, Khastgir D, Singha NK, Lee JH. Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science. 2009;34(8):783-810.
  • 39. Wallace G, Spinks G, Teasdale P. Conductive electroactive polymers, Technomic Pub. Co. Inc, USA. 1997:107-25.
  • 40. Zengin H, Zhou W, Jin J, Czerw R, Smith Jr DW, Echegoyen L, et al. Carbon nanotube doped polyaniline. Advanced materials. 2002;14(20):1480-3.
  • 41. Virji S, Kaner RB, Weiller BH. Hydrogen sensors based on conductivity changes in polyaniline nanofibers. The Journal of Physical Chemistry B. 2006;110(44):22266-70.
Year 2023, Volume: 10 Issue: 2, 493 - 504, 31.05.2023
https://doi.org/10.18596/jotcsa.1177040

Abstract

References

  • 1. Khalil HA, Fizree H, Bhat A, Jawaid M, Abdullah C. Development and characterization of epoxy nanocomposites based on nano-structured oil palm ash. Composites Part B: Engineering. 2013;53:324-33.
  • 2. Jaymand M. Recent progress in chemical modification of polyaniline. Progress in Polymer Science. 2013;38(9):1287-306.
  • 3. Bhadra S, Khastgir D, Singha NK, Lee JH. Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science. 2009;34(8):783-810.
  • 4. Darwish M, Ahmed HM, Mansour D-EA, editors. Thermo-mechanical properties of LDPE/SiO 2 nanocomposites based on chemically functionalized SiO 2 nanoparticles. International Symposium on Electrical Insulating Materials (ISEIM); 2020: IEEE.  241-244.
  • 5. Abdel‐Gawad NM, El Dein AZ, Mansour DEA, Ahmed HM, Darwish MM, Lehtonen M. PVC nanocomposites for cable insulation with enhanced dielectric properties, partial discharge resistance and mechanical performance. High Voltage. 2020;5(4):463-71.
  • 6. Mansour D-EA, Abdel-Gawad NM, El Dein AZ, Ahmed HM, Darwish MM, Lehtonen M. Recent advances in polymer nanocomposites based on polyethylene and polyvinylchloride for power cables. Materials. 2020;14(1):66.
  • 7. Stejskal J, Gilbert R. Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and applied chemistry. 2002;74(5):857-67.
  • 8. Chiang JC, Macdiarmid AG. Polyaniline - protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals. 1986;13(1-3):193-205.
  • 9. Kobayashi T, Yoneyama H, Tamura H. Polyaniline film-coated electrodes as electrochromic display devices. Journal of Electroanalytical Chemistry. 1984;161(2):419-23.
  • 10. Genies EM, Boyle A, Lapkowski M, Tsintavis C. Polyaniline - a historical survey. Synthetic Metals. 1990;36(2):139-82.
  • 11. Macdiarmid AG, Chiang JC, Halpern M, Huang WS, Mu SL, Somasiri NLD, et al. Polyaniline - Interconversion of Metallic and Insulating Forms. Molecular Crystals and Liquid Crystals. 1985;121(1-4):173-80.
  • 12. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363(6430):603-5.
  • 13. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes - the route toward applications. Science. 2002;297(5582):787-92.
  • 14. Fischer JE, Dai H, Thess A, Lee R, Hanjani NM, Dehaas DL, et al. Metallic resistivity in crystalline ropes of single-wall carbon nanotubes. Physical Review B. 1997;55(8):R4921-R4.
  • 15. Wang Y, Chen Y, Wen Q, Zheng H, Xu H, Qi L. Electricity generation, energy storage, and microbial-community analysis in microbial fuel cells with multilayer capacitive anodes. Energy. 2019;189:116342.
  • 16. Zhang H, He B, Tang Q, Yu L. Bifacial dye-sensitized solar cells from covalent-bonded polyaniline–multiwalled carbon nanotube complex counter electrodes. Journal of Power Sources. 2015;275:489-97.
  • 17. Al-badri M, Albdiry M. Electrochemical performance of ternary s-GN/PANI/CNTs nanocomposite as supercapacitor power electrodes. Periodicals of Engineering and Natural Sciences. 2020;8(4):2484-9.
  • 18. Zou L, Lan C, Yang L, Xu Z, Chu C, Liu Y, et al. The optimization of nanocomposite coating with polyaniline coated carbon nanotubes on fabrics for exceptional electromagnetic interference shielding. Diamond and Related Materials. 2020;104:107757.
  • 19. Roy A, Ray A, Sadhukhan P, Naskar K, Lal G, Bhar R, et al. Polyaniline-multiwalled carbon nanotube (PANI-MWCNT): Room temperature resistive carbon monoxide (CO) sensor. Synthetic Metals. 2018;245:182-9.
  • 20. Wang CY, Mottaghitalab V, Too CO, Spinks GM, Wallace GG. Polyaniline and polyaniline–carbon nanotube composite fibres as battery materials in ionic liquid electrolyte. Journal of Power Sources. 2007;163(2):1105-9.
  • 21. Huang Y, Lu J, Kang S, Weng D, Han L, Wang Y. Synthesis and application of MnO2/PANI/MWCNT ternary nanocomposite as an electrode material for supercapacitors. Int J Electrochem Sci. 2019;14:9298-310.
  • 22. Maity D, Manoharan M, Kumar RTR. Development of the PANI/MWCNT Nanocomposite-Based Fluorescent Sensor for Selective Detection of Aqueous Ammonia. Acs Omega. 2020;5(15):8414-22.
  • 23. Huangfu Y, Ruan K, Qiu H, Lu Y, Liang C, Kong J, et al. Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Composites Part A: Applied Science and Manufacturing. 2019;121:265-72.
  • 24. Saeed MS, Seyed-Yazdi J, Hekmatara H. Fe2O3/Fe3O4/PANI/MWCNT nanocomposite with the optimum amount and uniform orientation of Fe2O3/Fe3O4 NPs in polyaniline for high microwave absorbing performance. Journal of Alloys and Compounds. 2020;843.
  • 25. Paul SJ, Gupta BK, Chandra P. Probing the electrical and dielectric properties of polyaniline multi-walled carbon nanotubes nanocomposites doped in different protonic acids. Polymer Bulletin. 2021;78:5667-83.
  • 26. Wu T-M, Lin Y-W. Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties. Polymer. 2006;47(10):3576-82.
  • 27. Phang SW, Tadokoro M, Watanabe J, Kuramoto N. Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes. Synthetic Metals. 2008;158(6):251-8.
  • 28. Endo M, Takeuchi K, Hiraoka T, Furuta T, Kasai T, Sun X, et al. Stacking nature of graphene layers in carbon nanotubes and nanofibres. Journal of Physics and Chemistry of Solids. 1997;58(11):1707-12.
  • 29. Zhang X, Zhang J, Liu Z. Tubular composite of doped polyaniline with multi-walled carbon nanotubes. Applied Physics A. 2005;80:1813-7.
  • 30. Konyushenko EN, Stejskal J, Trchova M, Hradil J, Kovarova J, Prokes J, et al. Multi-wall carbon nanotubes coated with polyaniline. Polymer. 2006;47(16):5715-23.
  • 31. Lefrant S, Baltog I, de la Chapelle ML, Baibarac M, Louarn G, Journet C, et al. Structural properties of some conducting polymers and carbon nanotubes investigated by SERS spectroscopy. Synthetic metals. 1999;100(1):13-27.
  • 32. Li Y, Peng H, Li G, Chen K. Synthesis and electrochemical performance of sandwich-like polyaniline/graphene composite nanosheets. European Polymer Journal. 2012;48(8):1406-12.
  • 33. Cochet M, Maser WK, Benito AM, Callejas MA, Martinez MT, Benoit JM, et al. Synthesis of a new polyaniline/nanotube composite: "in-situ" polymerisation and charge transfer through site-selective interaction. Chemical Communications. 2001(16):1450-1.
  • 34. Ghatak S, Chakraborty G, Meikap A, Woods T, Babu R, Blau W. Synthesis and characterization of polyaniline/carbon nanotube composites. Journal of Applied Polymer Science. 2011;119(2):1016-25.
  • 35. Pekdemir ME, Kök M, Qader IN, AYDOĞDU Y. Preparation and physicochemical properties of mwcnt doped polyvinyl chloride/poly (ε-caprolactone) blend. Journal of Polymer Research. 2022;29(4):109.
  • 36. Haruna H, Pekdemir ME, Tukur A, Coşkun M. Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. Journal of Thermal Analysis and Calorimetry. 2020;139:3887-95.
  • 37. Heeger AJ. Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials. Reviews of Modern Physics. 2001;73(3):681-700.
  • 38. Bhadra S, Khastgir D, Singha NK, Lee JH. Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science. 2009;34(8):783-810.
  • 39. Wallace G, Spinks G, Teasdale P. Conductive electroactive polymers, Technomic Pub. Co. Inc, USA. 1997:107-25.
  • 40. Zengin H, Zhou W, Jin J, Czerw R, Smith Jr DW, Echegoyen L, et al. Carbon nanotube doped polyaniline. Advanced materials. 2002;14(20):1480-3.
  • 41. Virji S, Kaner RB, Weiller BH. Hydrogen sensors based on conductivity changes in polyaniline nanofibers. The Journal of Physical Chemistry B. 2006;110(44):22266-70.
There are 41 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section RESEARCH ARTICLES
Authors

Sharon Jyotika Paul 0000-0001-9324-8467

Sarvesh Kumar Singh 0000-0003-4964-1442

Jaya Tuteja 0000-0001-8739-1320

Arpit Sand 0000-0002-7014-673X

Prakash Chandra 0000-0002-8616-2005

Publication Date May 31, 2023
Submission Date September 19, 2022
Acceptance Date April 24, 2023
Published in Issue Year 2023 Volume: 10 Issue: 2

Cite

Vancouver Paul SJ, Singh SK, Tuteja J, Sand A, Chandra P. Probing the Electro-Chemical and Thermal Properties of Polyaniline/MWCNT Nanocomposites. JOTCSA. 2023;10(2):493-504.