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REPRESENTATIONS OF RECIPROCALS OF LUCAS SEQUENCES
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Abstract. In 1953 Stancliff noted an interesting property of the Fibonacci number F1; = 89.

One has that ! F P P F F F
0 1 2 3 4 5
— = + =+t +g+t——=+ <+
89 10 102 103 10* 105 106
De Weger determined a complete list of similar identities in case of the Fibonacci sequence, the
solutions are as follows

111 iFk_l 11 iFk_l

—_—=— = - = k , —_— = - = k’

F F 1 =t 2 Fs 5 =1 3
1_1_§:F,€_1 1_1_§:F,€_1
Flo 55 4 8 ' Fu 89 10k’

In this article we study similar problems in case of general Lucas sequences Uy, (P, Q). We deal
with equations of the form
o0

1 _ Ug—1(P1.01)
Un(P2,02) _kz::l xk ’

for certain pairs (P, Q1) # (P2, Q2). We also consider equations of the form
i Ug-1(P.Q) _ i Ri—1
ok = vk
k=1 k=1
where Rj is a ternary linear recurrence sequence. The proofs are based on results related to Thue
equations and elliptic curves.

2010 Mathematics Subject Classification: 11D25; 11B39

Keywords: Lucas sequences, Diophantine equations, elliptic curves

This work was partially supported by the European Union and the European Social Fund through
project EFOP-3.6.1-16-2016-00022 (Sz.T.). The research was supported in part by grant K115479 and
K128088 (Sz.T.) of the Hungarian National Foundation for Scientific Research. The work of Hayder
H. R. was supported by the Stipendium Hungaricum Scholarship.

(© 2018 Miskolc University Press



866 H. R. HASHIM AND SZ. TENGELY

1. INTRODUCTION

Let P and Q be non-zero relatively prime integers. The Lucas sequence {U, (P, Q)}
is defined by

Up=0,Uy=1and U, = PUp,—1 — QU,—», if n > 2.
The associated Lucas sequence {V, (P, Q)} is defined by
Vo=2,Vi=Pand V, = PUy—_1 —QUp—3, iftn > 2.
Terms of Lucas sequences and associated Lucas sequences satisfy the identity
V2—-DU? = 40", (1.1

where D = P2 —4Q. In 1953, Stancliff [12] noted an interesting property of the
Fibonacci sequence U, (1,—1) = F;,. One has that

1 1 F
— = —=0.0112358... =
Fi1 89 Z

In 1980, Winans [17] studied the related sums

k+1
o 10

for certain values of «. In 1981 Hudson and Winans [7] characterized all decimal
fractions that can be approximated by sums of the type

n

1 Fyr
Fy 2. 10/+1)” ol z 1.

k=1

Long [10] obtained a general identity for binary recurrence sequences from which

one obtains e.g.

1 i Fy 1 i Fy
109 = (—10)k 1 10099 = (~100)k+1°

In case of the equation

1 3 Uk—l(P7Q), (12)

Un(P.Q) ~ /= xk

De Weger [4] determined all x > 2 in case of (P, Q) = (1,—1). The solutions are as
follows

1_1_1_%1@(_1 1_1_iFk_1
Fr F 1 4= 2k Fs o5 3k
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_ _ Fk 1 _ . Fr—1
F10 Z ’ Z 10k

In 2014 Tengely [15] extended the above result and obtained e.g.

1 1
Uto ~ 416020 Z647’€+1’

where Uy = 0,U; =1 and U, = 4U;—1 + U,—3,n > 2. Recently Ohtsuka and Na-
kamura [1 1] proved that

(Z5)

k=n

F,—» if n > 2 is even,
F,o—1 ifn>1isodd,

where |-] denotes the floor function. This result has been investigated by several
other mathematicians see e.g. [0, 9].

2. AUXILIARY RESULTS

In the proofs we will use the following two results of Kohler [].

Lemma 1. Let A, B,ag,ay be arbitrary complex numbers. Define the sequence
{ay} by the recursion an+1 = Aay + Ba,—1. Then the formula

i ag apx — Aaog +aq
xk+1 " x2—-Ax—B
k=0
holds for all complex x such that |x| is larger than the absolute values of the zeros of
2
x“—Ax—B.

Lemma 2. Let arbitrary complex numbers Ag, A1,...,Am,a0,a1,...,an be given.
Define the sequence (an)y by the recursion

apt+1 = Aoan +Aran—1+-+ Anan—m

Then for all complex z such that |z| is larger than the absolute values of all zeros of

q(z) =zt — Agz™ — A1 2" — - — Ay, the formula
i ag—1 _ p(2)
=
oy 2 q(z)

holds with p(z) = aoz™ +b12™ " + -+ + by, where by, = ag — Y ¥—o Aiag_1_; for
1<k <m.
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3. MAIN RESULTS
In this paper we extend the results of [15], we consider the equation

1 iUk—l(Pval)’

Un(P2,02) N xk G-

k=1

for certain pairs (P1, Q1) # (P2, Q2). We consider non-degenerate sequences with
1 < P <3and Q = +£1. Define the set S as follows

S ={u1(n) = Up(1.,—1),uz(n) = Up(1.1),u3(n) = Up(2,—1),us(n) = Un(3,-1),
us(n) = Un(3,1)}.

Theorem 1. The equation

1 = uj(k—1
—— = Lk)’ (3.2)
uj(n) = X
has the following solutions with 1 <i,j <5,i # j
@, j,n,x)e{(1,2,{1,2},2),(1,3,1,2),(1,3,3,3),(1,3,5,6),(1,4,1,2),
(1,4,5,11),(1,4,7,35),(1,5,1,2),(1,5,5,8),(2,1,4,2),(2,1,7,4),
(2917895)7(2’57272)3(275’495)7(3317393)7(3917997)7(4’17474)9
(4,1,14,21),(4,5,2,4),(4,5,7,21),(5,1,{1,2},3),(5,1,5,4),
(5,1,10,9),(5,1,11,11),(5,2,{1,2},3),(5,3,1,3),(5,3,3,4),
(5,3,5,7),(5,4,1,3),(5,4,5,12),(5,4,7,36)}.
We also deal with equations of the form
o0 o0
uj(k—1) Ri—1
P D (33)
k=1 k=1 7

where R, is a ternary linear recurrence sequence. We provide results in case of the
Tribonacci sequence defined by To =71 = 0,7, =1 and Ty4+3 = T2 + Th+1 +
T, ,n > 0 and Berstel’s sequence, that is given by Bo = B; =0,B, =1 and B, 43 =
2Bp42—4Bpy1+4By,n=0.

Theorem 2. The complete list of solutions of equation (3.3) with u, € S, R, €
{Bn, Ty} and positive integers x,y satisfying conditions of Lemma 1 and 2 is as
follows
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’un ‘Rn ‘ (x,y) H Un ‘Rn‘ (x,y) ‘
uy | By {(25,9)} uy | T {(2,2)}
U | By {(10,5)} us | Ty {(7,4),(309,46)}
us | By 0 us | Ty [{¢(t*=2)+1,t2—1):t >2,t € N}
ug | By | {(6,3),(18,7)} || usa | Ty {4
us | By {(26,9)} us | Ty {}

4. PROOFS OF THE THEOREMS

Proof of Theorem 1. Consider equation (3.1), by Lemma 1 we obtain that

o0

ZUk—l(PLQl) _ 1
xk x2—Pix+ 01

k=1

Hence we have that U, (P2, Q2) = x> — P1x + Q1. Combining the latter equation
with (1.1) we get V, (P2, 02)? = (P2 —402)(x% — P1x + 01)? +40Q%. The so-
called two-cover descent by Bruin and Stoll [3] can be used to prove that a given
hyperelliptic curve has no rational points. It is implemented in Magma [2], the pro-
cedure is called TwoCoverDescent. If it fails and we do not find any rational points
on the curve, then we apply the argument by Alekseyev and Tengely [1], that reduces
the problem to Thue equations. If we have a rational point on the curve, then using
a method by Tzanakis [16] the integral points can be determined. This algorithm
is implemented in Magma as IntegralQuarticPoints. In this way we collect the
possible values of x.

[(P1.01.P2,02) | x [ (P1,O1.P2,02)] x [(P1.01.P2.02) ] x |

(1,—1,1,1) 2 (I,1,1,—1) 2,45 @.—1,1,-1) [3.7
(1,—-1,2,—1) | 2,3,6 (1,1,2,—1) - 2,—1,1,1) -
(1,—-1,3,—1) |2,11,35| (1,1,3,—1) 2 2,—-1,3,-1) | —
(1,—1,3,1) 2.8 (1,1,3,1) 2,5 2,—1,3,1) -

(P1,01.P2,02) | x || (P1.01.P2.05) X
G._1,1,—-1) |421|| G, LI1,—1) |3,40911
G.—1,1,1) - G111 3
G.—1.2-1) | - G.1,2,-1) 34,7
G.—13,1) 421 3,1,3,-1) |3,12,36

It remains to compute the set of possible values of n. We provide details of the com-
putation in case of (P, Q1, P2, Q2) = (3,—1,1,—1), following these steps all other
equations can be handled. In case of (Py, Q1, P>, 0») = (3,—1,1,—1) we have that
x € {4,21}. If x = 4, then we define a matrix T as follows

(3/4 1/4
T—(1/4 0)'
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We have that
1 1) (1 y
Z(T"+T1+T2+---+TN 1)(0):( N M)
k=1 4k

It follows that
N

Z Uk71(37_1) _
—_— =
k=1 4
273N N N 3N+1

R ((JE+3) (5&+13)+(13—5~/ﬁ)(—¢ﬁ+3) —~13-2 )
hence we have that

) il Up-13.-1) 1 1

hm _— = - = .

N—>00 4k 3 Us(l,-1)

In this case we obtain that n = 4. If x = 21, then

_(3/21 1)21
T—(1/21 0 )

In a similar way than in case of x = 4 we get that

i U1 3, —1) _
- =
e 21
N N
(71"3N2N+1 —(VI3+3) (3v13+1)+ (3v13-1) (—v13+3) )2—1"—1
377-7N3N ’
therefore
AR /Y W D R 1
lim L e —
N—>o<>k_1 21k 377 U14(1,—1)
The only solution in this case is given by n = 14. U

Proof of Theorem 2. We provide a general argument that works for other sequences
as well. Letag =0,a; =1 and ap4+1 = Aan + Bap—1. Letbg = b1 =0,b5 =1 and
bn+1 = Cby + Dby—1 + Eb,—5. Equation (3.3) yields that

Y2=X3—4CX?>-16DX + 1642 + 64B —64E,

where Y = 8x —4A4 and X = 4y. If the cubic polynomial in X is square-free, then
we have an elliptic equation and integral points can be determined using the so-
called elliptic logarithm method developed by Stroeker and Tzanakis [14] and in-
dependently by Gebel, Pethd and Zimmer [5]. There exists a number of software
implementations for determining integral points on elliptic curves based on this tech-
nique, here we used SageMath [13]. Let us consider the case with u,(n),7;,. We
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obtain the elliptic curve Y2 = X3 —4X2 —16X — 112. Using the SageMath function
integral_points () we get

[(8:4:1),(16:52:1),(29:143: 1), (184: 2468 : 1)].

From these points we have that (x, y) € {(7,4), (309,46)}. As a second example con-
sider the case with 14, B,,. The elliptic curve is given by Y2 = X3 —8X2 4 64X —48.
The list of integral points is

[(1:3:1),(4:12:1),(12:36:1),(28:132:1)].

Thus we get that (x, y) € {(6,3), (18,7)}. Finally let us deal with the special case with
u3, T,,. The cubic polynomial is not square-free, it is (X + 4)(X —4)2. Therefore we
have that X +4 = 4y +4 = u?. Hence y = t2 — 1 for some integer ¢ > 2. It follows
that x = #(t? —2) + 1. So we obtain infinitely many identities of the form

o uak—1) X Trg
LG+ F -

k=1 k=1
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