(43-4) 11 * << * >> * Russian * English * Content * All Issues

Estimation of resonance characteristics of single-layer surface-plasmon sensors in liquid solutions using Fano’s approximation in the visible and infrared regions

D.V. Nesterenko1,2, R.A. Pavelkin 2, S. Hayashi 3,4

1 IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia

2 Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia,

3 Kobe University, Kobe 657-8501, Japan,

4 Moroccan Foundation for Science, Innovation and Research (MAScIR), Rabat 10100, Morocco

 PDF, 1072 kB

DOI: 10.18287/2412-6179-2019-43-4-596-604

Pages: 596-604.

Full text of article: Russian language.

Abstract:
In this work, we consider the use of planar sensing structures, which support excitation of surface plasmon polarition (SPP) modes, for detecting changes in solvents, i.e. water, ethanol, isopropanol. In the structures under study, SPP modes propagate along the interfaces between metals and general solvents. The analysis of characteristics of the resonance response is based on Fano’s approximation within the coupled-mode theory in the visible and infrared regions. The maximum sensitivity and field enhancement are revealed in the near- and mid-infrared regions in the case of ethanol and isopropanol, which enables sensing applications beyond the regions of water absorption.

Keywords:
nanophotonics, plasmonics, planar structures, surface plasmon-polariton mode, optical resonances, sensing, Fano’s approximation

Citation:
Nesterenko DV, Pavelkin RA, Hayashi S. Estimation of resonance characteristics of single-layer surface-plasmon sensors in liquid solutions using Fano’s approximation in the visible and infrared regions. Computer Optics 2019; 43(4): 596-604. DOI: 10.18287/2412-6179-2019-43-4-596-604.

References:

  1. Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin, New York: Springer-Verlag; 1988.
  2. Homola J. Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 2003; 377(3): 528-539.
  3. Nenninger GG, Piliarik M, Homola J. Data analysis for optical sensors based on spectroscopy of surface plasmons. Measurement Science & Technology 2002; 13: 2038-2046.
  4. Chen Y, Ming H. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sensors 2012; 2(1): 37-49.
  5. Homola J, Dostálek J. Surface plasmon resonance based sensors. Berlin, Heidelberg, New York: Springer; 2006.
  6. Agranovich VM, Mills DL. Surface polaritons: electromagnetic waves at surfaces and interfaces. Amsterdam, New York: North-Holland Publishing Company; 1982.
  7. Adato R, Altug H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat Commun 2013; 4: 2154.
  8. Herminjard S, Sirigu L, Herzig HP, Studemann E, Crottini A, Pellaux JP, Gresch T, Fischer M, Faist J. Surface plasmon resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range. Opt Express 2009; 17(1): 293-303.
  9. Neubrech F, Pucci A. Plasmonic enhancement of vibrational excitations in the infrared. IEEE J Sel Top Quant 2013; 19(3): 4600809.
  10. Sondergaard T, Bozhevolnyi SI. Surface-plasmon polariton resonances in triangular-groove metal gratings. Phys Rev B 2009; 80(19): 195407.
  11. Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A 1968; 216(4): 398-410.
  12. Kretschmann E, Raether H. Notizen: Radiative decay of nonradiative surface plasmons excited by light. Zeitschrift für Naturforschung A 1968; 23: 2135-2136.
  13. Katsidis CC, Siapkas DI. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl Opt 2002; 41(19): 3978-3987.
  14. Nesterenko DV, Sekkat Z. Resolution estimation of the Au, Ag, Cu, and Al single- and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions. Plasmonics 2013; 8(4): 1585-1595. DOI: 10.1007/s11468-013-9575-1.
  15. Nesterenko DV, Hayashi S, Sekkat Z. Asymmetric surface plasmon resonances revisited as Fano resonances. Phys Rev B 2018; 97(23): 235437. DOI: 10.1103/PhysRevB.97.235437.
  16. Mason WP, Thurston RN. Physical acoustics: Principles and methods. Vol 6. New York: Academic Press; 1970.
  17. Gallinet B, Martin OJF. Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials. Phys Rev B 2011; 83(23): 235427.
  18. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 2008; 108(2): 462-493.
  19. Querry MR. Optical constants of minerals and other materials from the millimeter to the ultraviolet. Aberdeen Proving Ground, Md: US Army Armament, Munitions & Chemical Research, Development & Engineering Center; 1987.
  20. Palik ED. Handbook of optical constants of solids. Orlando: Academic Press; 1984.
  21. Rakić AD. Algorithm for the determination of intrinsic optical-constants of metal-films: application to aluminum. Appl Opt 1995; 34(22): 4755-4767.
  22. Segelstein DJ. The complex refractive index of water. M.S. thesis. Kansas City: University of Missouri; 1981.
  23. Sani E, Dell'Oro A. Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared. Opt Mater 2016; 60: 137-141.



© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20