Araştırma Makalesi

Mn, Cd, Fe ve Mg Metallerinin Saccharomyces cerevisiae Mayasında Antioksidan Enzim Aktiviteleri Üzerine Etkisi

- , 31.08.2018
https://doi.org/10.18016/ksudobil.359165

Öz

Metal
iyonları, kalıcı etkilerinden dolayı hem canlı sistemler hem de çevre sağlığı
yönünden önem taşımakta olup, belirli bir sınırı aşınca da son derece toksik
etki gösterirler. Özellikle ağır metaller bu konuda en riskli grubu oluşturur.
Bu çalışmada Saccharomyces cerevisiae'da,
mangan (Mn), kadmiyum (Cd), demir (Fe) ve magnezyumun (Mg) antioksidan enzimler
üzerindeki etkisinin ortaya konması amaçlanmıştır.
Deney materyali olan S. cerevisiae FMC16, YEDP besiyerinde
çoğaltılmış ve geliştirilmiştir. Uygulama grupları için; Mn, Cd, Fe ve Mg
metallerinin her biri son derişimi 100 mL’de 1 mg olacak şekilde kültür
ortamına ilave edilmiş ve uygulama yapılan (deneysel grup) ve yapılmayan
(kontrol grubu) mayalarda süperoksit dismutaz (SOD), glutatyon S-transferaz
(GST) ve glutatyon redüktaz (GSH-Rd) enzim aktiviteleri spektrofometrik
yöntemlerle belirlenmiştir. Sonuç olarak; kontrol grubuna göre tüm deneysel
gruplarda SOD aktivitesinin arttığı ve bu artışın istatiksel açıdan önemli
olduğu ( p<0.001), ve özellikle Cd ile muamele edilen grupta SOD enzim
aktitesi artışının daha belirgin olduğu gözlemlenmiştir. GST aktivitesinin
uygulama yapılan tüm gruplarda kontrol grubuna göre arttığı (p<0.0001) ve Fe
ile muamele edilen mayalarda GST enzim aktivitesindeki artışın diğer gruplara
oranla fazla olduğu, GSH-Rd aktivitesinin ise bütün metal uygulama gruplarında
kontrole göre azaldığı ve bu azalmanın Cd grubunda oldukça belirgin olduğu
saptanmıştır (p<0.0001). Sonuçlar; S.
Cerevisae
’da farklı metallerin antioksidan savunma sistemi üzerinde farklı
etkilere sahip olduğunu göstermiştir.

Kaynakça

  • Adamis PDB, Gomes DS, Pereira MD, Mesquita JF, Pinto MLCC, Panek AD, Eleutherıo ECA 2004. The effect of superoxide dismutase deficiency on cadmium stress. Jornal of Biochemical and Molecular Toxicology, 18: 1–6 (2004).
  • Ajila CM, Prasada Rao UJS 2008. Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Magnifera indica L. peel extract. Food and Chemical Toxicology, 46: 303-309.
  • Asagba SO, Isamah GK, Ossai EK, Ekakitie, AO 2002. Effect of oral exposure to cadmium on the levels of vitamin A and lipid peroxidation in the eye. Bullet in Enviromental Contamination and Toxicology, 68: 18-21.
  • Avery SV 2001. Metal toxicity in yeasts and the role of oxidative stress. Advances in Applied Microbiology, 49: 111–142.
  • Bast A, Haenen GRMM, Cees JAD 1997. Oxidants and antioxidants: State of the art. The American Journal of Medicine, 91 (Supll 3C): 30,3C-2S_3C-13S.
  • Boucher JL, Genet A, Vadon S, Delaforge M, Henry Y, Mansuy D 1992. Cytocrome P450 catalyzes the oxidation of N-hydroxy-L-arginine by NADPH and O2 to nitric oxide and citrulline. Biochemical and Biophysical Research Communications, 187: 880–886.
  • Cardoso LA, Ferreira ST, Hermes-Lima M 2008. Reductive inactivation of yeast glutathione reductase by Fe(II) and NADPH. Comparative Biochemistry and Physiology Part A, 151: 313–321.
  • Carlberg I, Mannervik B 1985. Glutathione reductase. Methods in Enzymology, 113: 484-490.
  • Choi JH, Willard L, Vancura A. 1998. A novel membrane bound glutathione S-transferase functions in the stationary phase of the yeast Sacharomyces cerevisiae. Journal of Biological Chemisrt, 273: 29915–29922.
  • Doelman P, Jansen E, Michels M, Van TM 1994. Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity–resistance index, an ecologically relevant parameter. Biology and Fertility of Soils, 17: 177–184.
  • Gaetke LM, Chow CK 2003 Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology,1 89: 147–163.
  • Galiazzo F, Labbe-Bois R 1993. Regulation of Cu, Zn- and Mn-superoxide dismutase transcription in Saccharomyces cerevisiae. FEBS, 315 (2): 197- 200.
  • Guan-Zetic VG, Stehlik-Tomas V, Grba S, Lutilsky L, Kozlek D 2001. Chromium uptake by Saccharomyces cerevisiae and isolation of glucose tolerance factor from yeast biomass. Journal of Biosciences, 26 (2): 217–223.
  • Gulcin I, Kufrevioglu OI, Oktay M, Büyükokuroglu ME 2004. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). Journal of Ethnopharmacology, 90: 205–215.
  • Gutierrez-Correa J, Stoppani AO 1997. Inactivation of yeast glutathione reductase by Fenton systems: effect of metal chelators, catecholamines and thiol compounds. Free Radical Research, 27: 543–555.
  • Habig WH, Pabst MJ, Jakoby WB 1974. Glutathione-S-Transferases: The First Enzymatic Steo İn Mercapturic Acid Formation. Journal of Biological Chemistry, 249: 7130-7139.
  • Hermes-Lima M, Santos NCF, Yan J, Andrews M, Schulman HM, Ponka P. 1999. EPR spin trapping and 2-deoxyribose degradation studies of the effect of pyridoxal isonicotinoyl hydrazone (PIH) on OH formation by the Fenton reaction. Biochimica Biophysica Acta, 1426: 475–482.
  • Jeong JB, Park JH, Lee HK, Ju SY, Hong SC, Lee JR, Chung GY, Lim JH, Jeong HJ 2009. Protective effect of the extracts from Cnidium officinale against oxidative damage induced by hydrogen peroxide via antioxidant effect. Food and Chemical Toxicology, 47: 525-529.
  • Lee JH, Choi IY, Kil IS, Kim SY, Yang ES, Park J 2001. Protective role of superoxide dismutases against ionizing radiation in yeast. Biochimica et Biophysica Acta, 1526: 191–198.
  • Lushchak V, Semchyshyn H, Mandryk S, Lushchak O 2005. Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions. Archives of Biochemistry and Biophyscis, 441: 35–40.
  • Lushchak VI, Gospodaryov DV 2005. Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell Biology International, 29: 187-192.
  • Marklund SL, Westman NG, Roos G, Carlsson J 1984. Radiation resistance and the CuZn superoxide dismutase, Mn superoxide dismutase, catalase, and glutathione peroxidase activities of seven human cell lines. Radiation Research, 100: 115-123.
  • Ruis H, Koller F 1997. Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Eds. Scandalios JG, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
  • Sairam RK, Rao KV, Srivastava GC 2002. Differential response of wheat genotypes to term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163: 1037– 46.
  • Schützendübel A, Polle A 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53: 1351–1365.
  • Scott MD, Meshnick SR, Eaton JW 1989. Superoxide dismutase amplifies organismal sensitivity to ionizing radiation. Journal of Biological Chemistry, 264: 2489–2501. Stohr C, Strule F, Marx G, Ullrich WR, Rockel PA 2001. Plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta, 212: 835– 841.
  • Villegas LB, Amoroso MJ, De Figueroa LIC 2009. Responses of Candida fukuyamaensis RCL-3 and Rhodotorula mucilaginosa RCL-11 to copper stress. Journal of Basic Microbiology, 49: 395-403.

The Effects of Mn, Mg, Cd, Fe Metals on The Avtivitiy of Antioxidant Enzymes in Saccharomyces cerevisiae

- , 31.08.2018
https://doi.org/10.18016/ksudobil.359165

Öz

Metal ions, despite being important for both live systems and
environmental health due to their permanent effects, and may become extremely
toxic effect if they exceed a certain limit. Especially heavy metals are
considered as the most risky group in this regard. In this study it is intended
to reveal the effect of manganese (Mn), cadmium (Cd), iron (Fe) and magnesium
(Mg) on antioxidant enzymes in Saccharomyces cerevisiae. S. cerevisiae FMC16,
the strain used in this experiments, was proliferated and developed on YEDP
medium. For application groups; Mn, Cd, Fe and Mg metals were separately added
to the culture medium at the final concentration of 1 mg at 100 mL. Superoxide
dismutase (SOD), glutathione S-transferase (GST) and glutathione reductase
(GSH-Rd) enzyme activities were determined spectrophotometrically in the
treated (experimental group) and non-treated (control group) yeasts. As a
result; it was observed that SOD activity was increased and the increase was
statistically significant (p <0.001) in all experimental groups compared to
the control group altough rise of SOD enzyme activity was more prominent
especially in the group treated with Cd. While the activity of GST was found to
be higher in all treated groups compared to the control (p <0.0001) and the
increase in Fe-treated yeast was observed to be higher than in the other
groups, the level of GSH-Rd decreased in all groups compared to the control,
and it was especially prominent in the Cd group (p <0.0001).  The results showed that, different metals
have different effects on the antioxidant defense system in S. cerevisae.

Kaynakça

  • Adamis PDB, Gomes DS, Pereira MD, Mesquita JF, Pinto MLCC, Panek AD, Eleutherıo ECA 2004. The effect of superoxide dismutase deficiency on cadmium stress. Jornal of Biochemical and Molecular Toxicology, 18: 1–6 (2004).
  • Ajila CM, Prasada Rao UJS 2008. Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Magnifera indica L. peel extract. Food and Chemical Toxicology, 46: 303-309.
  • Asagba SO, Isamah GK, Ossai EK, Ekakitie, AO 2002. Effect of oral exposure to cadmium on the levels of vitamin A and lipid peroxidation in the eye. Bullet in Enviromental Contamination and Toxicology, 68: 18-21.
  • Avery SV 2001. Metal toxicity in yeasts and the role of oxidative stress. Advances in Applied Microbiology, 49: 111–142.
  • Bast A, Haenen GRMM, Cees JAD 1997. Oxidants and antioxidants: State of the art. The American Journal of Medicine, 91 (Supll 3C): 30,3C-2S_3C-13S.
  • Boucher JL, Genet A, Vadon S, Delaforge M, Henry Y, Mansuy D 1992. Cytocrome P450 catalyzes the oxidation of N-hydroxy-L-arginine by NADPH and O2 to nitric oxide and citrulline. Biochemical and Biophysical Research Communications, 187: 880–886.
  • Cardoso LA, Ferreira ST, Hermes-Lima M 2008. Reductive inactivation of yeast glutathione reductase by Fe(II) and NADPH. Comparative Biochemistry and Physiology Part A, 151: 313–321.
  • Carlberg I, Mannervik B 1985. Glutathione reductase. Methods in Enzymology, 113: 484-490.
  • Choi JH, Willard L, Vancura A. 1998. A novel membrane bound glutathione S-transferase functions in the stationary phase of the yeast Sacharomyces cerevisiae. Journal of Biological Chemisrt, 273: 29915–29922.
  • Doelman P, Jansen E, Michels M, Van TM 1994. Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity–resistance index, an ecologically relevant parameter. Biology and Fertility of Soils, 17: 177–184.
  • Gaetke LM, Chow CK 2003 Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology,1 89: 147–163.
  • Galiazzo F, Labbe-Bois R 1993. Regulation of Cu, Zn- and Mn-superoxide dismutase transcription in Saccharomyces cerevisiae. FEBS, 315 (2): 197- 200.
  • Guan-Zetic VG, Stehlik-Tomas V, Grba S, Lutilsky L, Kozlek D 2001. Chromium uptake by Saccharomyces cerevisiae and isolation of glucose tolerance factor from yeast biomass. Journal of Biosciences, 26 (2): 217–223.
  • Gulcin I, Kufrevioglu OI, Oktay M, Büyükokuroglu ME 2004. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). Journal of Ethnopharmacology, 90: 205–215.
  • Gutierrez-Correa J, Stoppani AO 1997. Inactivation of yeast glutathione reductase by Fenton systems: effect of metal chelators, catecholamines and thiol compounds. Free Radical Research, 27: 543–555.
  • Habig WH, Pabst MJ, Jakoby WB 1974. Glutathione-S-Transferases: The First Enzymatic Steo İn Mercapturic Acid Formation. Journal of Biological Chemistry, 249: 7130-7139.
  • Hermes-Lima M, Santos NCF, Yan J, Andrews M, Schulman HM, Ponka P. 1999. EPR spin trapping and 2-deoxyribose degradation studies of the effect of pyridoxal isonicotinoyl hydrazone (PIH) on OH formation by the Fenton reaction. Biochimica Biophysica Acta, 1426: 475–482.
  • Jeong JB, Park JH, Lee HK, Ju SY, Hong SC, Lee JR, Chung GY, Lim JH, Jeong HJ 2009. Protective effect of the extracts from Cnidium officinale against oxidative damage induced by hydrogen peroxide via antioxidant effect. Food and Chemical Toxicology, 47: 525-529.
  • Lee JH, Choi IY, Kil IS, Kim SY, Yang ES, Park J 2001. Protective role of superoxide dismutases against ionizing radiation in yeast. Biochimica et Biophysica Acta, 1526: 191–198.
  • Lushchak V, Semchyshyn H, Mandryk S, Lushchak O 2005. Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions. Archives of Biochemistry and Biophyscis, 441: 35–40.
  • Lushchak VI, Gospodaryov DV 2005. Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell Biology International, 29: 187-192.
  • Marklund SL, Westman NG, Roos G, Carlsson J 1984. Radiation resistance and the CuZn superoxide dismutase, Mn superoxide dismutase, catalase, and glutathione peroxidase activities of seven human cell lines. Radiation Research, 100: 115-123.
  • Ruis H, Koller F 1997. Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Eds. Scandalios JG, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
  • Sairam RK, Rao KV, Srivastava GC 2002. Differential response of wheat genotypes to term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163: 1037– 46.
  • Schützendübel A, Polle A 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53: 1351–1365.
  • Scott MD, Meshnick SR, Eaton JW 1989. Superoxide dismutase amplifies organismal sensitivity to ionizing radiation. Journal of Biological Chemistry, 264: 2489–2501. Stohr C, Strule F, Marx G, Ullrich WR, Rockel PA 2001. Plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta, 212: 835– 841.
  • Villegas LB, Amoroso MJ, De Figueroa LIC 2009. Responses of Candida fukuyamaensis RCL-3 and Rhodotorula mucilaginosa RCL-11 to copper stress. Journal of Basic Microbiology, 49: 395-403.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Yazarlar

Oğuz Ayhan Kireçci 0000-0003-2205-4758

Yayımlanma Tarihi 31 Ağustos 2018
Kabul Tarihi 13 Şubat 2018

Kaynak Göster

APA Kireçci, O. A. (t.y.). Mn, Cd, Fe ve Mg Metallerinin Saccharomyces cerevisiae Mayasında Antioksidan Enzim Aktiviteleri Üzerine Etkisi. KSÜ Doğa Bilimleri Dergisi. https://doi.org/10.18016/ksudobil.359165
AMA Kireçci OA. Mn, Cd, Fe ve Mg Metallerinin Saccharomyces cerevisiae Mayasında Antioksidan Enzim Aktiviteleri Üzerine Etkisi. KSÜ Doğa Bilimleri Dergisi. doi:10.18016/ksudobil.359165
Chicago Kireçci, Oğuz Ayhan. “Mn, Cd, Fe Ve Mg Metallerinin Saccharomyces Cerevisiae Mayasında Antioksidan Enzim Aktiviteleri Üzerine Etkisi”. KSÜ Doğa Bilimleri Dergisit.y. https://doi.org/10.18016/ksudobil.359165.
EndNote Kireçci OA Mn, Cd, Fe ve Mg Metallerinin Saccharomyces cerevisiae Mayasında Antioksidan Enzim Aktiviteleri Üzerine Etkisi. KSÜ Doğa Bilimleri Dergisi
IEEE O. A. Kireçci, “Mn, Cd, Fe ve Mg Metallerinin Saccharomyces cerevisiae Mayasında Antioksidan Enzim Aktiviteleri Üzerine Etkisi”, KSÜ Doğa Bilimleri Dergisi, doi: 10.18016/ksudobil.359165.
ISNAD Kireçci, Oğuz Ayhan. “Mn, Cd, Fe Ve Mg Metallerinin Saccharomyces Cerevisiae Mayasında Antioksidan Enzim Aktiviteleri Üzerine Etkisi”. KSÜ Doğa Bilimleri Dergisi. t.y. https://doi.org/10.18016/ksudobil.359165.
JAMA Kireçci OA. Mn, Cd, Fe ve Mg Metallerinin Saccharomyces cerevisiae Mayasında Antioksidan Enzim Aktiviteleri Üzerine Etkisi. KSÜ Doğa Bilimleri Dergisi. doi:10.18016/ksudobil.359165.
MLA Kireçci, Oğuz Ayhan. “Mn, Cd, Fe Ve Mg Metallerinin Saccharomyces Cerevisiae Mayasında Antioksidan Enzim Aktiviteleri Üzerine Etkisi”. KSÜ Doğa Bilimleri Dergisi, doi:10.18016/ksudobil.359165.
Vancouver Kireçci OA. Mn, Cd, Fe ve Mg Metallerinin Saccharomyces cerevisiae Mayasında Antioksidan Enzim Aktiviteleri Üzerine Etkisi. KSÜ Doğa Bilimleri Dergisi.