Araştırma Makalesi

Effect of Melatonin on some of the Physiological and Biochemical Parameters of Tobacco (Nicotiana tabacum L. ) under Drought and Salt Stresses

- , 31.08.2018
https://doi.org/10.18016/ksudobil.350965

Öz

Plants are generally exposed to abiotic stress
factors such as drought and salt. Objective of this study was to compare the
changes that salinity and drought stress would create simultaneously and
individually on tobacco plant and to determine the changes by melatonin
application. A pot experiment was conducted in a growth chamber and replicated
three times in 2016.  For this reason,
half of the plants were subjected to 50 µM melatonin, the other half was left
untreated. Prior to the melatonin application, NaCl (50 mM) and PEG (10%) stress effects were
applied both individually and combined (50 mM NaCl + 10% PEG). The results indicated that chlorophyll
content in tobacco plants was decreased, however the carotenoid contents,
proline, malondialdehyde and activities of ascorbat peroxidase and guaiacol
peroxidase were increased. Mentioned activity changes were even greater for the
combined stress factor application. On the other hand, in 50 µM melatonin applied
plants were found to be increasing in enzymatic activity as well as the
contents of pigment, prolin and malondialdehite. This study illustrated that
melatonin application on the leaves coordinates the stress response and
decreases the negative effect of the drought and salinity. 

Kaynakça

  • Adıyaman Tütün Raporu, 2013. İpekyolu Kalkınma Ajansı Adıyaman Yatırım Destek Ofisi, Adıyaman.
  • Andrews, C. J. 2005. Purifcation and characterisation of a family of glutathione transferases with roles in herbicide detoxifcation in soybean (Glycine max L.); selective enhancement by herbicides and herbicide safeners. Pestic. Biochem. Phys, 82 : 205–219.
  • Arnao, M.B., Hernandez-Ruiz, J. 2014. Melatonin: plant growth regulator and/or biostimulator during stress? Trends in Plant Sci, 19(12) : 789-797.
  • Bates, L.S., Waldren, R.P., Teare, I.D. 1973. Rapid determination of proline for water-studies. Plant Soi, 39 : 205-207.
  • Bueno, P., Piqueras, A., Kurepa J., Savoure´, A., Verbruggen, N., Montagu, M.V., Inze, D. 1998. Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Sci, 138 : 27–34.
  • Büyük, İ., Soydam-Aydın, S., Aras, S. 2012. Bitkilerin stres koşullarına verdiği moleküler cevaplar. Türk Hij. Den. Biyol. Derg. 69(2) : 97 – 110.
  • Cakmak, I. 1994. Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium-deficient and potassium deficient leaves, but not in phosphorus-deficient leaves. J. Exp. Bot, 45 : 1259–1266.
  • Çelik, Ö, Atak, Ç. 2012. The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turk J Biol, 36 : 339-356.
  • Çulha, Ş., Çakırlar, H. 2011. Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları, AKU Fen Bilimleri Dergisi, 11 : 11-34.
  • De-Kok, L., Graham, M. 1980. Levels of pigments, soluble proteins, amino acids and sulfhydryl compounds in foliar tissue of Arabidopsis thaliana during dark induced and natural senescence. Plant Physiol. Biochem, 27 : 133-142.
  • Delauney, A.J., Verma, D.P.S. 1993. Proline biosynthesis and osmoregulation in plants. Plant J, 4(2) : 215-223.
  • Heath, R.L., Packer, L. 1968. Photoperoxidation in isolated chloroplast, I. kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophysics, 125 : 180–198.
  • Kalefetoğlu, T., Ekmekçi, Y. 2005. The effects of drought on plants and tolerance mechanisms. G.Ü. Fen Bilimleri Dergisi, 18(4) : 723-740.
  • Karabacak, K. 2017. Türkiye’de tütün tarımı ve coğrafi dağılışı, Coğrafi Bilimler Dergisi, 15 (1) : 27- 48.
  • Kaya, A., Yigit, E. 2014. The physiological and biochemical effects of salicylic acid on sunflowers (Helianthus annuus) exposed to flurochloridone. Ecotox. Environ. Safe, 106 : 232–238.
  • Kobylinska, A., Reiter, R.J., Posmyk, M.M., 2017. Melatonin protects cultured tobacco cells against lead-ınduced cell death via ınhibition of Cytochrome c translocation. Front Plant Sci, 8 : 1560.
  • Kobylinska, A., Posmyk, M.M. 2016. Melatonin restricts Pb-induced PCD by enhancing BI-1 expression in tobacco suspension cells. Biometals, 29 : 1059–1074.
  • Korkmaz, A., Demir, Ö., Kocaçınar, F., Cuci, Y. 2016. Biber fidelerinde yapraktan yapılan melatonin uygulamalarıyla üşüme stresine karşı toleransın arttırılması, KSÜ Doğa Bil. Derg, 19 (3) : 348-354.
  • Lichtenthaler, K., Welburn, A.R. 1983. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Botanisches Institutder Univeristat, Kaiserstran βe 12, Postfach pp. 591-592.
  • Mac Adam, J.W., Nelson, C.J., Sharp, R.E. 1992. Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiol, 99 : 872-878.
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sci, 7, 405-410.
  • Mýtinová, Z., Motyka, V., Haisel, D., Gaudinová, A., Lubovská, Z., Wilhelmová, N. 2010. Effect of abiotic stresses on the activity of antioxidative enzymes and contents of phytohormones in wild type and AtCKX2 transgenic tobacco plants. Biol. Plant. 54 (3) : 461-470
  • Nakano, Y., Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 22 : 867–880.
  • Ohkawa, H., Ohishi, N., Yagi, K. 1979. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal. Biochem, 95 : 351.
  • Örs, S., Ekinci, M. 2015. Kuraklık stresi ve bitki fizyolojisi, Derim, 32 (2) : 237-250.
  • Posmyk, M.M., Kuran, H., Marciniak, K., Janas, K.M. 2008. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentration., J. Pineal Res, 45 : 24–31.
  • Santos, C.V. 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic, 103 : 93–99.
  • Yıldız, M., Terzi, H., Cenkci, S., Arıkan Terzi, E.S., Uruşak, B. 2010. Bitkilerde tuzluluğa toleransın fizyolojik ve biyokimyasal markörleri, AUBTD-C, 1(1) : 1-33.
  • Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S., Guo, Y.D. 2014. Roles of melatonin in abiotic stress resistance in plants. Journal Exp. Bot, 66 (3) : 647-56.

Kuraklık ve Tuz Streslerine Maruz Kalan Tütün (Nicotiana tabacum L. ) Bitkisinde Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Melatoninin Etkileri

- , 31.08.2018
https://doi.org/10.18016/ksudobil.350965

Öz

Bitkiler kuraklık ve tuzluluk gibi abiyotik stres
faktörlerine sıklıkla maruz kalırlar. 2016 yılında yapılan bu çalışma tuzluluk
ve kuraklık streslerinin ayrı ayrı ve eş zamanlı olarak uygulandığında tütün
bitkisinde meydana gelen değişimleri belirlemek ve dışarıdan yapılan melatonin
uygulamasının bu değişimler üzerine etkisini saptamak amacıyla, iklimlendirme
odasında, saksılarda 3 tekrarlamalı olarak yürütülmüştür. Bu amaçla saksılara
dikilen tütün fidelerinin yarısına püskürtme yolu ile bir kez 50 µM melatonin
uygulanırken, diğer yarısına uygulama yapılmamıştır. Stres ve kontrol
gruplarında klorofil, karotenoid, prolin ve malondialdehit içerikleri ile
askorbat peroksidaz ve guaiakol peroksidaz aktiviteleri incelenmiştir. Dışsal
melatonin uygulaması yapılmadan NaCl (50 mM) ve PEG (%10) streslerine hem ayrı
ayrı, hem de eş zamanlı (50 mM NaCl + % 10 PEG) maruz kalan tütün bitkilerinde
klorofil içeriği azalmıştır. Bu bitkilerde karotenoid, prolin ve malondialdehit
içerikleri ile askorbat peroksidaz ve guaiakol peroksidaz aktiviteleri
artmıştır. Bu değişimlerin eş zamanlı stres uygulanan bitkilerde daha belirgin
olduğu gözlenmiştir. Bununla birlikte 50 µM melatonin uygulaması pigment,
prolin ve malondialdehit içerikleri ile enzim aktivitelerini arttırmıştır. Bu
çalışma yapraklara melatonin uygulamasının tütün bitkisinde stres cevaplarını
düzenleyerek kuraklık ve tuzluluğun olumsuz etkilerini azalttığını
göstermektedir.

Kaynakça

  • Adıyaman Tütün Raporu, 2013. İpekyolu Kalkınma Ajansı Adıyaman Yatırım Destek Ofisi, Adıyaman.
  • Andrews, C. J. 2005. Purifcation and characterisation of a family of glutathione transferases with roles in herbicide detoxifcation in soybean (Glycine max L.); selective enhancement by herbicides and herbicide safeners. Pestic. Biochem. Phys, 82 : 205–219.
  • Arnao, M.B., Hernandez-Ruiz, J. 2014. Melatonin: plant growth regulator and/or biostimulator during stress? Trends in Plant Sci, 19(12) : 789-797.
  • Bates, L.S., Waldren, R.P., Teare, I.D. 1973. Rapid determination of proline for water-studies. Plant Soi, 39 : 205-207.
  • Bueno, P., Piqueras, A., Kurepa J., Savoure´, A., Verbruggen, N., Montagu, M.V., Inze, D. 1998. Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Sci, 138 : 27–34.
  • Büyük, İ., Soydam-Aydın, S., Aras, S. 2012. Bitkilerin stres koşullarına verdiği moleküler cevaplar. Türk Hij. Den. Biyol. Derg. 69(2) : 97 – 110.
  • Cakmak, I. 1994. Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium-deficient and potassium deficient leaves, but not in phosphorus-deficient leaves. J. Exp. Bot, 45 : 1259–1266.
  • Çelik, Ö, Atak, Ç. 2012. The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turk J Biol, 36 : 339-356.
  • Çulha, Ş., Çakırlar, H. 2011. Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları, AKU Fen Bilimleri Dergisi, 11 : 11-34.
  • De-Kok, L., Graham, M. 1980. Levels of pigments, soluble proteins, amino acids and sulfhydryl compounds in foliar tissue of Arabidopsis thaliana during dark induced and natural senescence. Plant Physiol. Biochem, 27 : 133-142.
  • Delauney, A.J., Verma, D.P.S. 1993. Proline biosynthesis and osmoregulation in plants. Plant J, 4(2) : 215-223.
  • Heath, R.L., Packer, L. 1968. Photoperoxidation in isolated chloroplast, I. kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophysics, 125 : 180–198.
  • Kalefetoğlu, T., Ekmekçi, Y. 2005. The effects of drought on plants and tolerance mechanisms. G.Ü. Fen Bilimleri Dergisi, 18(4) : 723-740.
  • Karabacak, K. 2017. Türkiye’de tütün tarımı ve coğrafi dağılışı, Coğrafi Bilimler Dergisi, 15 (1) : 27- 48.
  • Kaya, A., Yigit, E. 2014. The physiological and biochemical effects of salicylic acid on sunflowers (Helianthus annuus) exposed to flurochloridone. Ecotox. Environ. Safe, 106 : 232–238.
  • Kobylinska, A., Reiter, R.J., Posmyk, M.M., 2017. Melatonin protects cultured tobacco cells against lead-ınduced cell death via ınhibition of Cytochrome c translocation. Front Plant Sci, 8 : 1560.
  • Kobylinska, A., Posmyk, M.M. 2016. Melatonin restricts Pb-induced PCD by enhancing BI-1 expression in tobacco suspension cells. Biometals, 29 : 1059–1074.
  • Korkmaz, A., Demir, Ö., Kocaçınar, F., Cuci, Y. 2016. Biber fidelerinde yapraktan yapılan melatonin uygulamalarıyla üşüme stresine karşı toleransın arttırılması, KSÜ Doğa Bil. Derg, 19 (3) : 348-354.
  • Lichtenthaler, K., Welburn, A.R. 1983. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Botanisches Institutder Univeristat, Kaiserstran βe 12, Postfach pp. 591-592.
  • Mac Adam, J.W., Nelson, C.J., Sharp, R.E. 1992. Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiol, 99 : 872-878.
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sci, 7, 405-410.
  • Mýtinová, Z., Motyka, V., Haisel, D., Gaudinová, A., Lubovská, Z., Wilhelmová, N. 2010. Effect of abiotic stresses on the activity of antioxidative enzymes and contents of phytohormones in wild type and AtCKX2 transgenic tobacco plants. Biol. Plant. 54 (3) : 461-470
  • Nakano, Y., Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 22 : 867–880.
  • Ohkawa, H., Ohishi, N., Yagi, K. 1979. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal. Biochem, 95 : 351.
  • Örs, S., Ekinci, M. 2015. Kuraklık stresi ve bitki fizyolojisi, Derim, 32 (2) : 237-250.
  • Posmyk, M.M., Kuran, H., Marciniak, K., Janas, K.M. 2008. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentration., J. Pineal Res, 45 : 24–31.
  • Santos, C.V. 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic, 103 : 93–99.
  • Yıldız, M., Terzi, H., Cenkci, S., Arıkan Terzi, E.S., Uruşak, B. 2010. Bitkilerde tuzluluğa toleransın fizyolojik ve biyokimyasal markörleri, AUBTD-C, 1(1) : 1-33.
  • Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S., Guo, Y.D. 2014. Roles of melatonin in abiotic stress resistance in plants. Journal Exp. Bot, 66 (3) : 647-56.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Yazarlar

Armağan Kaya

Memet İnan

Yayımlanma Tarihi 31 Ağustos 2018
Kabul Tarihi 19 Ocak 2018

Kaynak Göster

APA Kaya, A., & İnan, M. (t.y.). Kuraklık ve Tuz Streslerine Maruz Kalan Tütün (Nicotiana tabacum L. ) Bitkisinde Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Melatoninin Etkileri. KSÜ Doğa Bilimleri Dergisi. https://doi.org/10.18016/ksudobil.350965
AMA Kaya A, İnan M. Kuraklık ve Tuz Streslerine Maruz Kalan Tütün (Nicotiana tabacum L. ) Bitkisinde Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Melatoninin Etkileri. KSÜ Doğa Bilimleri Dergisi. doi:10.18016/ksudobil.350965
Chicago Kaya, Armağan, ve Memet İnan. “Kuraklık Ve Tuz Streslerine Maruz Kalan Tütün (Nicotiana Tabacum L. ) Bitkisinde Bazı Fizyolojik Ve Biyokimyasal Parametreler Üzerine Melatoninin Etkileri”. KSÜ Doğa Bilimleri Dergisit.y. https://doi.org/10.18016/ksudobil.350965.
EndNote Kaya A, İnan M Kuraklık ve Tuz Streslerine Maruz Kalan Tütün (Nicotiana tabacum L. ) Bitkisinde Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Melatoninin Etkileri. KSÜ Doğa Bilimleri Dergisi
IEEE A. Kaya ve M. İnan, “Kuraklık ve Tuz Streslerine Maruz Kalan Tütün (Nicotiana tabacum L. ) Bitkisinde Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Melatoninin Etkileri”, KSÜ Doğa Bilimleri Dergisi, doi: 10.18016/ksudobil.350965.
ISNAD Kaya, Armağan - İnan, Memet. “Kuraklık Ve Tuz Streslerine Maruz Kalan Tütün (Nicotiana Tabacum L. ) Bitkisinde Bazı Fizyolojik Ve Biyokimyasal Parametreler Üzerine Melatoninin Etkileri”. KSÜ Doğa Bilimleri Dergisi. t.y. https://doi.org/10.18016/ksudobil.350965.
JAMA Kaya A, İnan M. Kuraklık ve Tuz Streslerine Maruz Kalan Tütün (Nicotiana tabacum L. ) Bitkisinde Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Melatoninin Etkileri. KSÜ Doğa Bilimleri Dergisi. doi:10.18016/ksudobil.350965.
MLA Kaya, Armağan ve Memet İnan. “Kuraklık Ve Tuz Streslerine Maruz Kalan Tütün (Nicotiana Tabacum L. ) Bitkisinde Bazı Fizyolojik Ve Biyokimyasal Parametreler Üzerine Melatoninin Etkileri”. KSÜ Doğa Bilimleri Dergisi, doi:10.18016/ksudobil.350965.
Vancouver Kaya A, İnan M. Kuraklık ve Tuz Streslerine Maruz Kalan Tütün (Nicotiana tabacum L. ) Bitkisinde Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Melatoninin Etkileri. KSÜ Doğa Bilimleri Dergisi.