Plant Soil Environ., 2008, 54(11):463-470 | DOI: 10.17221/435-PSE

The changes of soil nitrogen and carbon contents in a long-term field experiment under different systems of nitrogen fertilization

V. Nedvěd, J. Balík, J. Černý, M. Kulhánek, M. Balíková
Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic

Content of N and C in soil were investigated in a long-term field experiment under different systems of N fertilization. Chernozem and Cambisol were extracted using hot water (Nhws, Chws) and 0.01M CaCl2 (NCaCl2, CDOC). The Ct/Nt ratio in Chernozem was 9.6:1 and in Cambisol 6.1:1. The lowest Ct/Nt ratio in both experiments was found in the control treatment. Results showed that C and N compounds are less stable in Cambisol, which leads to a higher rate of mineralization. In the Chernozem, Nhws formed 3.66% from the total N content in the soil whereas NCaCl2 formed only 0.82%. Chws formed 2.98% and CDOC 0.34% from total C content. Cambisol contains 4.81% of Nhws and 0.84% of NCaCl2 from the total N amount and 5.76% of Chws and 0.70% of CDOC from the total C content, respectively. Nitrogen extracted by 0.01M CaCl2 formed only 22.4% of N extractable by hot water in Chernozem and 17.5% in Cambisol. The lowest C/N ratios were obtained after the CaCl2 extraction (3.0-6.2:1). The application of manure increased the content of soil organic N and C compared to the sewage sludge treatments.

Keywords: long-term field experiment; nitrogen; carbon; sewage sludge; farmyard manure; soil organic matter

Published: November 30, 2008  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Nedvěd V, Balík J, Černý J, Kulhánek M, Balíková M. The changes of soil nitrogen and carbon contents in a long-term field experiment under different systems of nitrogen fertilization. Plant Soil Environ.. 2008;54(11):463-470. doi: 10.17221/435-PSE.
Download citation

References

  1. Balík J., Černý J., Tlustoš P., Zitková M. (2003): Nitrogen balance and mineral nitrogen content in the soil in a long experiment with maize under different systems of N fertilization. Plant Soil Environ., 49: 554-559. Go to original source...
  2. Balík J., Přibyl A., Procházka J., Tlustoš P. (1995): The effect of fertilization on the yield and nitrogen uptake at replicated cultivation of silage maize. Rostl. Výr., 41: 345-350. (In Czech)
  3. Cerhanová D., Friedlová M., Klement V., Kubát J. (2007): Evaluation of the effect of organic matter balance on the organic C contents in the topsoil. In: 4 th Conf. Practical Solutions for Managing Optimum C and N Content in Agricultural Soils, Prague, Czech Republic.
  4. Černý J., Balík J., Kulhánek M., Nedvěd V. (2008): The changes in microbial biomass C and N in long-term field experiments. Plant Soil Environ., 54: 212-218. Go to original source...
  5. Collins H.P., Rasmussen P.E., Douglas C.L.Jr. (1992): Crop rotation and residue management effect on soil carbon and microbial dynamics. Soil Sci. Soc. Am. J., 56: 783-788. Go to original source...
  6. Friedlová M., Klement V., Kubát J. (2007): Organic matter content in the topsoil in selected variants of the stationary field experiments conducted in different soil and climate conditions. In: 4 th Conf. Practical Solutions for Managing Optimum C and N Content in Agricultural Soils, Prague, Czech Republic.
  7. Garau M.A., Felipo M.T., Ruiz de Villa M.C. (1986): Nitrogen mineralization of sewage sludge in soils. J. Environ. Qual., 15: 225-228. Go to original source...
  8. Ghani A., Dexter M., Perrott K.W. (2003): Hot-water extractable carbon in soils: Sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil Biol. Biochem., 35: 1231-1243. Go to original source...
  9. Houba V.J.G., Novozamsky I., Huybregts A.W.M., Van der Lee J.J. (1986): Comparison of soil extractions by 0.01M CaCl2, by EUF and some conventional extraction procedures. Plant Soil, 96: 433-437. Go to original source...
  10. Houot S., Chaussod R. (1995): Impact of agricultural practices on the size and activity of the soil microbial biomass in a long-term field experiment. Biol. Fertil. Soils, 19: 309-316. Go to original source...
  11. Iakimenko I., Otabbong E., Sadovnikova E., Persson J., Nilsson I., Orlov D., Ammosova Y. (1996): Dynamic transformation of sewage sludge and farmyard manure components. I. Content of humic substances and mineralization of organic carbon and nitrogen in incubated soils. Agric. Ecosyst. Environ., 58: 121-126. Go to original source...
  12. Kaur T., Brar B.S., Dhillon N.S. (2008): Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize-wheat cropping system. Nutr. Cycl. Agroecosyst., 81: 59-69. Go to original source...
  13. Kolář L., Kužel S., Šindelářová M., Ledvina R. (2000): Soil organic matter, humus and microbial activity of soils submountain and mountain regions. Collection of Scientific Papers, Faculty of Agriculture in České Budějovice, Ser. Crop Sci., 17: 53-63.
  14. Körschens M. (1980): Beziehungen zwischen Feinanteil, Ct- und Nt-Gehalt des Bodens. Arch. Acker-Pfl.-Bau Bodenkde, 24: 582-592.
  15. Körschens M., Schulz E., Behm R. (1990): Hot water extractable carbon and nitrogen of soils as criteria of their ability for N-release. Zentralbl. Mikrobiol., 145: 305-311. Go to original source...
  16. Kubát J., Cerhanová D., Nováková J., Klement V., Čermák P., Dostál J. (2004): Total organic C and its decomposable part in arable soils in the Czech Republic. Arch. Agron. Soil Sci., 50: 21-32. Go to original source...
  17. Kubát J., Lipavský J. (2006): Steady state of the soil organic matter in the long-term field experiments. Plant Soil Environ., 52 (Special Issue): 9-14. Go to original source...
  18. Kubát J., Nováková J., Cerhanová D., Apfelthaler R. (1999): Organic nitrogen cycle, ammonification and nitrification activity in long-term field experiment. Rostl. Výr., 45: 397-402.
  19. Landgraf D., Böhm Ch., Makeschin F. (2003): Dynamics of different C and N fractions in Cambisol under five year succession fallow in Saxony (Germany). J. Plant Nutr. Soil Sci., 166: 319-325. Go to original source...
  20. Meng L., Ding W., Cai Z. (2005): Long-term application of organic manure and nitrogen fertilizer on N 2 O emissions, soil quality and crop production in a sandy loam soil. Soil Biol. Biochem., 37: 2037-2045. Go to original source...
  21. Nemeth K. (1976): Die effektive und potentionelle Nährstvoffverfügbarkeit im Boden und ihre Bestimmung mit Elektro-ultrafiltration. [Ph.D. Thesis.] Universität Giessen, Germany.
  22. Parkinson D., Paul E.A. (1982): Microbial biomass. In: Page A.L., Miller R.H., Keeney D.R. (eds.): Method of Soil Analysis: Chemical and Microbiological Properties. Am. Soc. Agron., Madison: 821-830. Go to original source...
  23. Paul E.A., Juma N.G. (1981): Mineralization and immobilization of soil nitrogen by microorganism. In: Clark F.E., Rosswal T. (eds.): Terrestrial Nitrogen Cycles. Ecology Bulletin No. 33, Stockholm: 179-195.
  24. Sadej W., Przekwas K. (2008): Fluctuations of nitrogen levels in soil profile under conditions of a longterm fertilization experiment. Plant Soil Environ., 54: 197-203. Go to original source...
  25. Schulz E. (1990): Die heiβwasserextrahierbare C-Fraktion als Kenngröβe zur Einschätzung des Versorgungszustandes der Böden mit organischer Substanz (OS). Tag.-Ber. Akad. Landwirtsch.-Wiss., 295: 269-275.
  26. Schulz E. (1997): Charakterisierung der organischen Bodensubstanz (OBS) nach dem Grad ihrer Umsetzbarkeit und ihre Bedeutung für Transformationsprozesse für Nähr- und Schadstoffe. Arch. Acker-Pfl.-Bau Bodenkde, 41: 465-483. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.