J. For. Sci., 2024, 70(4):202-207 | DOI: 10.17221/120/2023-JFS

Light response curve analysis of juvenile black locust clones: A case study from eastern HungaryShort Communication

Tamás Ábri ORCID...1, Dániel Gaganetz2, József Csajbók ORCID...2
1 Department of Plantation Forestry, Forest Research Institute, University of Sopron, Sopron, Hungary
2 Institute of Crop Sciences, University of Debrecen, Debrecen, Hungary

Assimilation (A) and photosystem II (PSII) efficiency value light response curves [A/PPFD and PSII/PPFD curves (PPFD – photosynthetic photon flux density)] of promising black locust clones (NK2 and PL251) and the registered Üllői clone were analysed to study the net assimilation rates and PSII efficiency within the function of PPFD levels. The natural logarithmic regression functions fitted well to the measured data points for A/PPFD, R2 values varied between 0.9515–0.9884. For PSII/PPFD values, we used the exponential regression function with R2 ranging from 0.9948 to 0.9989. Except for PL251, the A/PPFD curves of the tested clones increased steadily with increasing illumination levels but flattened at the 600 µmol·m–2·s–1 PPFD level due to the effect of photorespiration on the assimilation rate. For PL251, the A/PPFD curve decreased at the 1 200 µmol·m–2·s–1 PPFD level. Unlike A/PPFD results, the PSII/PPFD exponential curve decreased as the PPFD level increased. Europe is forecast to experience significant negative climate change factors, including increased drought, heat, and irregular precipitation. Under such conditions, relatively drought-tolerant tree species such as black locust will play a vital role in new afforestation and uninterrupted wood supply. Consequently, growing and improving newly bred black locust clones, including the ecophysiological studies of relatively drought-tolerant clones, is increasingly vital.

Keywords: assimilation; drought tolerance; ecophysiology; photosystem II

Received: November 28, 2023; Revised: January 9, 2024; Accepted: January 23, 2024; Prepublished online: April 11, 2024; Published: April 24, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ábri T, Gaganetz D, Csajbók J. Light response curve analysis of juvenile black locust clones: A case study from eastern Hungary. J. For. Sci.. 2024;70(4):202-207. doi: 10.17221/120/2023-JFS.
Download citation

References

  1. Ábri T., Csajbók J. (2023): Comparative study of newly-bred black locust clones with regard to photosynthetic rate and water use efficiency: Early evaluation. Acta Agraria Debreceniensis, 1: 5-10. Go to original source...
  2. Ábri T., Keserű Z., Borovics A., Rédei K., Csajbók J. (2022): Comparison of juvenile, drought tolerant black locust (Robinia pseudoacacia L.) clones with regard to plant physiology and growth characteristics in Eastern Hungary: Early evaluation. Forests, 13: 292. Go to original source...
  3. Ábri T., Cseke K., Keserű Z., Porcsin A., Szabó F.M., Rédei K. (2023a): Breeding and improvement of black locust (Robinia pseudoacacia L.) with a special focus on Hungary: A review. iForest - Biogeosciences and Forestry, 16: 290-298. Go to original source...
  4. Ábri T., Borovics A., Csajbók J., Kovács E., Koltay A., Keserű Z., Rédei K. (2023b): Differences in the growth and the ecophysiology of newly bred, drought-tolerant black locust clones. Forests, 14: 1802. Go to original source...
  5. Arena C., Vitale L., Santo A.V.D. (2008): Paraheliotropism in Robinia pseudoacacia plants: An efficient means to cope with photoinhibition. In: Allen J.F., Gantt E., Golbeck J.H., Osmond B. (eds): Photosynthesis. Energy from the Sun. Dordrecht, Springer: 1403-1406. Go to original source...
  6. Brito C., Dinis L.T., Moutinho-Pereira J., Correia C.M. (2019): Drought stress effects and olive tree acclimation under a changing climate. Plants, 8: 232. Go to original source... Go to PubMed...
  7. Chaves M.M., Flexas J., Pinheiro C. (2009): Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103: 551-560. Go to original source... Go to PubMed...
  8. Choi D., Jang W., Toda H., Yoshikawa M. (2021): Differences in characteristics of photosynthesis and nitrogen utilization in leaves of the black locust (Robinia pseudoacacia L.) according to leaf position. Forests, 12: 348. Go to original source...
  9. Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. (2009): Plant drought stress: Effects, mechanisms and management. In: Lichtfouse E., Navarrete M., Debaeke P., Véronique S., Alberola C. (eds): Sustainable Agriculture. Dordrecht, Springer: 153-188. Go to original source...
  10. Farooq M., Hussain M., Wahid A., Siddique K.H.M. (2012): Drought stress in plants: An overview. In: Aroca R. (ed.): Plant Responses to Drought Stress. Heidelberg, Springer: 1-33. Go to original source...
  11. Flexas J., Medrano H. (2002): Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Annals of Botany, 89: 183-189. Go to original source... Go to PubMed...
  12. Küppers M., Schmitt D., Liner S., Böhm C., Kanzler M., Veste M. (2018): Photosynthetic characteristics and simulation of annual leaf carbon gains of hybrid poplar (Populus nigra L. × P. maximowiczii Henry) and black locust (Robinia pseudoacacia L.) in a temperate agroforestry system. Agroforest Systems, 92: 1267-1286. Go to original source...
  13. Lange C.A., Knoche D., Hanschke R., Löffler S., Schneck V. (2022): Physiological performance and biomass growth of different black locust origins growing on a post-mining reclamation site in Eastern Germany. Forests, 13: 315. Go to original source...
  14. Mantovani D., Veste M., Freese D. (2014): Black locust (Robinia pseudoacacia L.) ecophysiological and morphological adaptations to drought and their consequence on biomass production and water-use efficiency. New Zealand Journal of Forestry Science, 44: 1-11. Go to original source...
  15. Meng F., Peng M., Pang H., Huang F. (2014): Comparison of photosynthesis and leaf ultrastructure on two black locust (Robinia pseudoacacia L.). Biochemical Systematics and Ecology, 55: 170-175. Go to original source...
  16. Nicolescu V.N., Rédei K., Mason W.L., Vor T., Pöetzelsberger E., Bastien J.C., Brus R., Benča» T., Đodan M., Cvjetkovic B., Andraąev S., La Porta N., Lavnyy V., Mandľukovski D., Petkova K., Roľenbergar D., W±sik R., Mohren G.M.J., Monteverdi M.C., Musch B., Klisz M., Perić S., Keça L., Bartlett D., Hernea C., Pástor M. (2020): Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non native species integrated into European forests. Journal of Forestry Research, 31: 1081-1101. Go to original source...
  17. Rédei K., Keserű Z., Bach I., Rásó J., Ábri T., Szabó F., Gál J. (2020): Management of Robinia pseudoacacia cv. 'Üllői' - 'Üllői' locust. Acta Silvatica et Lignaria Hungarica, 16: 9-18. Go to original source...
  18. Vítková M., Müllerová J., Sádlo J., Pergl J., Pyąek P. (2017): Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. Forest Ecology and Management, 384: 287-302. Go to original source... Go to PubMed...
  19. Zheng Y., Zhao Z., Zhou J., Zhou H. (2012): Evaluations of different leaf and canopy photosynthesis models: A case study with black locust (Robinia pseudoacacia) plantations on a Loess Plateau. Pakistan Journal of Botany, 4: 531-539.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.