J. For. Sci., 2017, 63(10):449-456 | DOI: 10.17221/106/2016-JFS

Multivariate analysis for assessment of the tree populations based on dendrometric data with an example of similarity among Norway spruce subpopulationsOriginal Paper

Karel MATĚJKA*
IDS, Prague, Czech Republic

The new method for evaluation of tree populations presented here is based on a correlation analysis within a set of dendrometric variables. The correlation analysis is carried out for each population separately. The method evaluates differences between resulting correlation matrices. These distances can be used by hierarchical cluster analysis (unweighted pair-group average) or by ordination analysis (non-metric multidimensional scaling - NMS). Test data were obtained in 10 research plots in the area of Medvědí Mt., Šumava National Park. Plots are located in Norway spruce [Picea abies (Linnaeus) H. Karsten] climax forests. The results enable ecological interpretation of both classification and NMS. The populations (subpopulations) differ in their origin (spontaneous succession or partial planting) and environmental conditions (extreme environment near the mountain summit versus water-logged soils). These differences were reflected in results of the classification and ordination of the spruce (sub)populations.

Keywords: dendrometry; hierarchical classification; ordination; Picea abies

Published: October 31, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
MATĚJKA K. Multivariate analysis for assessment of the tree populations based on dendrometric data with an example of similarity among Norway spruce subpopulations. J. For. Sci.. 2017;63(10):449-456. doi: 10.17221/106/2016-JFS.
Download citation

References

  1. Anděl J. (1985): Matematická statistika. Prague, SNTL/ ALFA: 346.
  2. Bartelink H.H. (1997): Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L.). Annales des Sciences Forestières, 54: 39-50. Go to original source...
  3. Bartelink H.H. (1998): A model of dry matter partitioning in trees. Tree Physiology, 18: 91-101. Go to original source... Go to PubMed...
  4. Bates D.M., Watts D.G. (1980): Relative curvature measures of nonlinearity. Journal of Royal Statistical Society, 42: 1-16. Go to original source...
  5. Bednařík J., Matějka K. (2011): Ekosystémy vzniklé sekundární sukcesí Picea abies v oblasti Medvědí hory (Šumava). Available at http://www.infodatasys.cz/biodivkrsu/RoklLes2009.pdf (accessed Aug 22, 2017).
  6. Bednařík J., Matějka K. (2014): Struktura porostů Picea abies (L.) Karst. ovlivněných antropogenními disturbancemi v oblasti Medvědí hory (NP Šumava). Zprávy lesnického výzkumu, 59: 18-27.
  7. Bednařík J., Čada V., Matějka K. (2014): Forest succession after a major anthropogenic disturbance: A case study of the Jewish Forest in the Bohemian Forest, Czech Republic. Journal of Forest Science, 60: 336-348. Go to original source...
  8. Bertalanffy L.V. (1957): Quantitative laws in metabolism and growth. The Quarterly Review of Biology, 32: 217-231. Go to original source... Go to PubMed...
  9. Blujdea V.N.B., Pilli R., Dutca I., Ciuvat L., Abrudan I.V. (2012): Allometric biomass equations for young broadleaved trees in plantations in Romania. Forest Ecology and Management, 264: 172-184. Go to original source...
  10. Budzáková M., Hodálová I., Mereďa P., Somlyay L., Bisbing S.M., Šibík J. (2014): Karyological, morphological and ecological differentiation of Sesleria caerulea and S. tatrae in the Western Carpathians and adjacent regions. Preslia, 86: 245-277.
  11. Buford M.A. (1986): Height-diameter relationship at age 15 in loblolly pine seed sources. Forest Science, 32: 812-818.
  12. Cattell R.B. (1952): Factor Analysis: An Introduction and Manual for the Psychologist and Social Scientist. New York, Harper: 462. Go to original source...
  13. Černý M. (1990): Biomass of Picea abies (L.) Karst. in Midwestern Bohemia. Scandinavian Journal of Forest Research, 5: 83-95. Go to original source...
  14. Csiky J., Mesterházy A., Szalontai B., Oláh E.P. (2010): A morphological study of Ceratophyllum tanaiticum, a species new to the flora of Hungary. Preslia, 82: 247-259.
  15. Curtis R.O. (1967): Height-diameter and height-diameter-age equations for second growth Douglas fir. Forest Science, 13: 365-375.
  16. Dimitris Z., Petteri M., Raisa M., Maurizio M. (2005): Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs, 4: 1-63. Go to original source...
  17. Fralish J.S. (1988): Diameter-height-biomass relationships for Quercus and Carya in Posen Woods Nature Reserve. Transactions of the Illinois State Academy of Science, 81: 31-38.
  18. Gugerli F., Walser J.C., Dounavi K., Holderegger R., Finkeldey R. (2007): Coincidence of small-scale spatial discontinuities in leaf morphology and nuclear microsatellite variation of Quercus petraea and Q. robur in a mixed forest. Annals of Botany, 99: 713-722. Go to original source... Go to PubMed...
  19. Henry M., Bombelli A., Trotta C., Alessandrini A., Birigazzi L., Sola G., Vieilledent G., Santenoise P., Longuetaud F., Valentini R., Picard N., Saint-André L. (2013): GlobAllomeTree: International platform for tree allometric equations to support volume, biomass and carbon assessment. iForest - Biogeosciences and Forestry, 6: 326-330. Go to original source...
  20. Huang S., Price D., Titus S.J. (2000): Development of ecoregionbased height-diameter models for white spruce in boreal forests. Forest Ecology and Management, 129: 125-141. Go to original source...
  21. Huxley J.S., Teissier G. (1936): Terminology of relative growth. Nature, 137: 780-781. Go to original source...
  22. Jenkins J.C., Chojnacky D.C., Heath L.S., Birdsey R.A. (2003): Comprehensive Database of Diameter-based Biomass Regressions for North American Tree Species. General Technical Report NE-319. Newtown Square, USDA Forest Service, Northeastern Research Station: 45. Go to original source...
  23. Kabátová K., Vít P., Suda J. (2014): Species boundaries and hybridization in central-European Nymphaea species inferred from genome size and morphometric data. Preslia, 86: 131-154.
  24. Koutecký P., Štěpánek J., Baďurová T. (2012): Differentiation between diploid and tetraploid Centaurea phrygia: Mating barriers, morphology and geographic distribution. Preslia, 84: 1-32.
  25. Legendre P., Legendre L. (2012): Numerical Ecology. 3rd Ed. Amsterdam, Elsevier: 990.
  26. Lepší M., Lepší P., Koutecký P., Bílá J., Vít P. (2015): Taxonomic revision of Sorbus subgenus Aria occurring in the Czech Republic. Preslia, 87: 109-162.
  27. Letz D.R., Dančák M., Danihelka J., Šarhanová P. (2012): Taxonomy and distribution of Cerastium pumilum and C. glutinosum in Central Europe. Preslia, 84: 33-69.
  28. Marvan P., Hindák F. (1989): Morphologische Variabilität von Centronella reicheltii (Bacillariophyceae) aus der Westslowakei. Preslia, 61: 1-14.
  29. Matějka K. (2017): Nápověda k programu DBreleve. Databáze fytocenologických snímků, verze 2.5. Available at http://www.infodatasys.cz/software/hlp_dbreleve/dbreleve.htm (accessed Aug 22, 2017).
  30. McCune B., Grace J.B. (2002): Analysis of Ecological Communities. Gleneden Beach, MjM Software Design: 300.
  31. Meloun M., Militký J., Hill M. (2012): Statistická analýza vícerozměrných dat v příkladech. Prague, Academia: 750.
  32. Meyer H.A. (1940): A mathematical expression for height curves. Journal of Forestry, 38: 415-420.
  33. Näslund M. (1936): Skogsforsö ksastaltens gallringsforsök i tallskog. Meddelanden från Statens Skogsförsöksanstalt, 29: 1-169.
  34. Nei M. (1978): Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583-590. Go to original source... Go to PubMed...
  35. Olšavská K., Šingliarová B., Kochjarová J., Labdíiková Z., Škodová I., Hegedüšová K., Janišová M. (2015): Exploring patterns of variation within the central-European Tephroseris longifolia agg.: Karyological and morphological study. Preslia, 87: 163-194.
  36. Osawa A., Allen R.B. (1993): Allometric theory explains selfthinning relationships of mountain beech and red pine. Ecology, 74: 1020-1032. Go to original source...
  37. Pretzsch H. (2009): Forest Dynamics, Growth and Yield. Berlin, Heidelberg, Springer-Verlag: 664. Go to original source...
  38. Robinson A.P., Hamann J.D. (2011): Forest Analytics with R. An Introduction. New York, Springer-Verlag: 339. Go to original source...
  39. Somogyi Z., Teobaldelli M., Federici S., Matteucci G., Pagliari V., Grassi G., Seufert G. (2008): Allometric biomass and carbon factors database. iForest - Biogeosciences and Forestry, 1: 107-113. Go to original source...
  40. StatSoft, Inc. (2013): Electronic statistics textbook. Available at http://www.statsoft.com/textbook/
  41. Staudhammer C., LeMay V. (2000): Height prediction equations using diameter and stand density measures. The Forestry Chronicle, 76: 303-309. Go to original source...
  42. Sumida A., Ito H., Isagi Y. (1997): Trade-off between height and stem diameter growth for an evergreen oak, Quercus glauca, in a mixed hardwood forest. Functional Ecology, 11: 300-309. Go to original source...
  43. van Laar A., Akça A. (2007): Forest Mensuration. Dordrecht, Springer-Verlag: 383. Go to original source...
  44. West P.W. (2009): Tree and Forest Measurement. 2nd Ed. Berlin, Heidelberg, Springer-Verlag: 191. Go to original source...
  45. Wirth C., Schumacher J., Schulze E.D. (2004): Generic biomass functions for Norway spruce in Central Europe - a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology, 24: 121-139. Go to original source... Go to PubMed...
  46. Wykoff W.R., Crookston N.L., Stage A.R. (1982): User's Guide to the Stand Prognosis Model. General Technical Report INT-133. Ogden, USDA Forest Service, Intermountain Forest and Range Experiment Station: 231. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.