Scientific journal
Bulletin of Higher Educational Institutions
North Caucasus region

TECHNICAL SCIENCES


UNIV. NEWS. NORTH-CAUCAS. REG. TECHNICAL SCIENCES SERIES. 2021; 2: 92-101

 

http://dx.doi.org/10.17213/0321-2653-2021-2-92-101

 

SILICATE AND ELECTROLYTIC POLYMER-OXIDE COATINGS FOR MEDICAL PURPOSES

E.A. Yatsenko, A.V. Ryabova, A.V. Khramenkova, B.M. Seredin, V.P. Popov, D.N. Ariskina, S.V. Trofimov, M.A. Kirilenko, O.Yu. Kuznetsov

Yatsenko Elena A. – Doctor of Technical Sciences, Professor, Head of Department «General Chemistry and Technology of Silicates», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia. E-mail: e_yatsenko@mail.ru

Ryabova Anna V. – Candidate of Technical Sciences, Associate Professor, Department «General Chemistry and Technology of Silicates», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia. E-mail: annet20002006@yandex.ru

Khramenkova Anna V. – Candidate of Technical Sciences, Associate Professor, Department «General Chemistry and Technology of Silicates», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia. E-mail: anna.vl7@yandex.ru

Seredin Boris M. – Doctor of Technical Sciences, Associate Professor, Head of Department «Physics and Photonics», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia. E-mail: seredinboris@gmail.com

Popov Victor P. – Doctor of Technical Sciences, Professor, Department «Physics and Photonics», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia. E-mail: popovnpi@gmail.com

Ariskina Dariуa N. – Graduate Student, Department «General Chemistry and Technology of Silicates», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia.
E-mail: ariskina.daria@mail.ru

Trofimov Sergey V. – Graduate Student, Department «General Chemistry and Technology of Silicates», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia.
E-mail: 23zarj23@mail.ru

Kirilenko Marina A. – Graduate Student, Department «Microbiology and Virology», Ivanovo State Medical Academy, Ivanovo, Russia E-mail: microbiol.isma@yandex.ru

Kuznetsov Oleg Yu. – Doctor of Biological Sciences, Head of Department «Microbiology and Virology», Ivanovo State Medical Academy, Ivanovo, Russia E-mail: olegkuz58@ya.ru

 

Abstract

In this review currently available experimental material in the field of creating antibacterial and antimycotic coatings for medical purpose is integrated across all sources. The main types of antibacterial composite coatings are considered: on the base of enamels, of organic, inorganic compounds, and on the base of hybrid materials. It is shown that the functional properties of such coatings, depend on presents of transition metal or transition metal oxides nanoparticles in their composition, which are effective antimicrobial agents against pathogenous microorganisms. The direction of further work is selected on the base of literature analysis in this subject area and the results of exploratory research are presented.

 

Keywords: glass enamel coatings; organic coatings; inorganic coatings; hybrid polymer-oxide coatings; antibacterial effect.

 

Full text: [in elibrary.ru]

 

References

1.  Zollfrank C., Gutbrod K., Wechsler P. [et al.]. Antimicrobial Activity of Transition Metal Acid MoO3 Prevents Microbial Growth on Material Surfaces // Materials Science and Engineering C. 2012. No. 32. Pр. 47 – 54.

2.  Akimkin V.G., Tutelyan А.В., Оrlova О.А. [et al.]. Infektsii, svyazannyye s okazaniyem meditsinskoy pomoshchi (ISMP) // Informatsionnaya byulleten’ 2018. Moscow. 2019.

3.  Garaev I.Kh., Musin I.N. Antiseptic Painting Systems // Bulletin of the Technological University. 2018. Vol. 21. No. 10. Pр. 63 – 66.

4.  Esaulenko N.B., Kameneva O.A., Kosyakova K.G. [et al.]. Nosocomial infections and microbiological monitoring in multidisciplinary medical institutions // Medical alphabet. 2018. Vol. 2. No. 35. Pр. 14 – 19.

5.  Bhushan М., Kumar Y., Periyasamy L. [et al.]. Fabrication and a Вetailed Study of Antibacterial Properties of α-Fe2O3/NiO Nanocomposites Along with Their Structural, Optical, Thermal, Magnetic and Cytotoxic Features // Nanotechnology. 2015. Vol. 30. No 8. Available at: https://iopscience.iop.org/article/10.1088/1361-6528/ab0124 (accessed 10.04.2021).

6.  Kenawy E.-R., Worley S. D., Broughton R. The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review // Biomacromolecules. 2007. Vol. 8. No. 5. Рр. 1359 – 1384.

7.  Chipara M., Ibrahim E., Yust B. Nanoparticles and Bacteria // Journal of Nanomedicine Research. 2015. Vol. 2. No. 3. Available at: https: //medcraveonline.com/JNMR/nanoparticles-and-bacteria.html (accessed 10.04.2021).

8.  Bhushan M., Muthukamalam S., Sudharani S. Synthesis of α-Fe2-xAgxO3 Nanocrystals and Study of Their Optical, Magnetic and Antibacterial Properties // RSC Adv. 2015. Vol. 5. No. 40. Рр. 32006 – 32014.

9.  Zollfrank C., Gutbrod K., Wechsler P., Guggenbichler J.P. Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces // Materials Science and Engineering C. 2012. Vol. 32. Р. 47 – 54.

10. Kandelbauer A., Widsten P. Antibacterial melamine resin surfaces for wood-based furniture and flooring // Progress in Organic Coatings. 2009. Vol. 65. Рр. 305 – 313.

11. Simo A., Drah M., Sibuyi N.R.S. Hydrothermal Synthesis of Cobalt-Doped Vanadium Oxides: Antimicrobial Activity Study // Ceramics International. 2018. Vol. 44. No. 7. Рр. 7716 – 7722.

12. Rufus A., Sreeju N., Daizy P. Synthesis of Biogenic Hematite (α-Fe2O3) Nanoparticles for Antibacterial and Nanofluid Applications // RSC Adv. 2016. Vol. 6. Pр. 94206 – 94217.

13. Sharma P., Rana D.S., Ahmad U. Iron Oxide Nanocubes for Photocatalytic Degradation and Antimicrobial Applications // Nanosci. Nanotechnol. Lett. 2016. Vol. 8. No. 11. Pр. 1014 – 1019.

14. Moodley J.S., Krishna S.B.N., Pillay K. [et al.]. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential // Adv. Nat. Sci.: Nanosci. Nanotechnol. 2018. Vol. 9. No. 1. Available at: https: // iopscience.iop.org / article/10.1088/2043-6254/aaabb2 (accessed 12.04.2021).

15. Yuan Y.G., Peng Q.L., Gurunathan S.J. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus Aureus and Pseudomonas Aeruginosa from Mastitis-infected Goats: An alternative Approach for Antimicrobial Therapy // Int. J. Mol. Sci. 2017. Vol. 18. No. 3. Available at: https://www.mdpi.com/1422-0067/18/3/569 (accessed 15.04.2021)

16. Hameed A.S.H., Karthikeyan C., Ahamed A.P. [et al.]. In Vitro Antibacterial Activity of ZnO and Nd Doped ZnO Nanoparticles Against ESBL Producing Escherichia Coli and Klebsiella Pneumonia // Scientific Reports 2016. Vol. 6. Available at: https://www.nature.com/articles/srep24312 (accessed 15.04.2021).

17. Saxena V., Chandra P., Pandey L.M. Design and Characterization of Novel Al-Doped ZnO Nanoassembly as an Effective Ananoantibiotic // Appl Nanosci. 2018. Vol. 8. No. 8. Pр. 1925 – 1941.

18. Trujillo W., Zarria J., Pino J. [et al.]. Adherence of Amino Acids Functionalized Iron Oxide Nanoparticles on Bacterial Models E. coli and B. subtilis // Subtilis Journal of Physics: Conf. Series. 2018. Vol. 987. Available at: https: // iopscience.iop.org / article / 10.1088 / 1742-6596 / 987 /1 / 012044 (accessed 16.04.2021).

19. Davarpanah A.M., Rahdar A., Dastnae M. A. [et al.]. (1-x)BaFe12O19/xCoFe2O4 Hard/Soft Magnetic Nanocomposites: Synthesis, Physical Characterization, and Antibacterial Activities Study // Journal of Molecular Structure. 2019. Vol. 1175. Pр. 445 – 449.

20. Jinbiao L. China Enamel Handbook, Light Industry Press, Beijing, 2001.

21. Savvova O.V., Bragina L.L. Antibacterial Composite Glass Coatings for Protecting Special-Purpose Steel Panels // Glass and Ceramics. 2010. Vol. 67, No. 3 – 4. Рр. 123 – 125.

22. Jiang W., Wang Y., Gu L. Study of the antibacterial function of enamel surface with Ag element diffusion // Materials Letters. 2008. Vol. 62. Рр. 262 – 265.

23. Smith J.R., Lamprou D.A. Polymer coatings for biomedical applications: a review // Transactions of the IMF. 2014. Vol. 92. No. 1. Pр. 9 – 19.

24. Neoh K.G., Kang E.T. Combating Bacterial Colonization on Metals via Polymer Coatings: Relevance to Marine and Medical Applications // ACS Appl. Mater. Interfaces. 2011. Vol. 3. Рр. 2808 – 2819.

25. Yuan S.J., Xu F.J., Kang E.T., Pehkonen S.O. Modification of Surface-Oxidized Copper Alloy by Coupling of Viologens for Inhibiting Microbiologically Influenced Corrosion // Journal of The Electrochemical Society. 2007. Vol. 154. No. 11. Рр.645 – 657.

26. Michel E.C., Montano-Machado V., Chevallier P. [et al.]. Dextran grafting on PTFE surface for cardiovascular applications // Biomatter. 2014. Vol. 4. Available at: https://www.tandfonline.com/doi/full/10.4161/biom.28805 (accessed 16.04.2021).

27. Carvalho D., Sousa T., Morais P.V., Piedade A.P. Polymer/metal nanocomposite coating with antimicrobial activity against hospital isolated pathogen // Applied Surface Science. 2016. Vol. 379. Рр. 489 – 496.

28. Kanazawa A., Ikeda T., Endo T.J. Antibacterial activity of polymeric sulfonium salts // Polym. Sci., Part A: Polym. Chem. 1993. Vol. 31. Рр. 2873 – 2876.

29. Kenawy E.-R., Abdel-Hay F.I., Abou El-Magd A., Mahmoud Y. Biologically active polymers: VII. Synthesis and antimicrobial activity of some crosslinked copolymers with quaternary ammonium and phosphonium groups // React. Funct. Polym. 2006. Vol. 66. Рр. 419 – 429.

30. Dutta R.K., Nenavathu B.P., Gangishetty M.K., [et al.]. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation // Colloid Surf. B. 2012. Vol. 94. Рр. 143 – 150.

31. Moritz M., Moritz M.G. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles // Chemical Engineering Journal. 2013. Vol. 228. Рр. 596 – 613.

32. Golkhatmi F. M., Bahramian B., Mamarabadi M. Application of surface modified nano ferrite nickel in catalytic reaction (epoxidation of alkenes) and investigation on its antibacterial and antifungal activities // Materials Science and Engineering C. 2017. Vol. 78. Рр. 1 – 11.

33. Oves M., Arshad M., Khan M. S., [et al.]. Antimicrobial activity of cobalt doped zinc oxide nanoparticles: Targeting water borne bacteria // Journal of Saudi Chemical Society. 2015. Vol. 19. Рр. 581 – 588.

34. Faustini М., Nicole L., Ruiz-Hitzky Е., Sanchez С. History of Organic–Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications // Adv. Funct. Mater. 2018. Vol. 28. Available at: https: //onlinelibrary.wiley.com/doi/full/10.1002/ adfm.201704158 (accessed 17.04.2021).

35. Brunet E., Colon J.L., Clearfield F. Tailored Organic-Inorganic Materials // John Wiley & Sons, Inc. 2015. Available at: https: // onlinelibrary.wiley.com/doi/abs/10.1002/9781118792223.ch3 (accessed 19.04.2021).

36. Kharisov B. I., Kharissova O. V., Ortiz-Mendez U. CRC Concise Encyclopedia of Nanotechnology. CRC Press, 2015. 330 p.

37. Soler-Illia G. J. de A. A., Sanchez C., Lebeau B., Patarin J. Chemical Strategies to Design Textured Materials:  from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures // Chem. Rev. 2002. Vol. 102. No. 11. Рр. 4093 – 4138.

38. Faustini M., Grosso D., Boissière C., [et al.]. Integrative Sol–Gel Chemistry: a Nanofoundry for Materials Science // J. Sol-Gel Sci. Technol. 2014. Vol. 70. Рр. 216 – 226.

39. Brun N., Ungureanu S., Deleuze H., Backov R. Hybrid Foams, Colloids and Beyond: From Design to Applications // Chem. Soc. Rev. 2011. Vol. 40. Рр. 771 – 778.

40. Mann S., Burkett S. L., Davis S. A., [et al.]. Sol-Gel Synthesis of Organized Matter // Chem. Mater. 1997. Vol. 9. Рр. 2300 – 2310.

41. Khramenkova A.V., Ariskina D.N., Polozhentsev O.Ye., Bespalova Zh.I. Obtaining of Hybrid Polymer-Oxide Materials by Transient Electrolysis Method // University News. North-Caucasian Region. Technical Sciences Series. 2018. No. 2. Рр. 110 – 114. Doi: 10.17213/0321-2653-2018-2-110-114.