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ABSTRACT 

It has been shown that the intratumor heterogeneity can be characterized with quantitative analysis of the [18]F-
FDG PET image data. The existing models employ multiple parameters for feature extraction which makes it 
difficult to implement in clinical settings for the quantitative characterization. This article reports an easy-to-use 
and differential SUV based model for quantitative assessment of the intratumor heterogeneity from 3D [18]F-
FDG PET image data. An H index is defined to assess tumor heterogeneity by summing voxel-wise distribution 
of differential SUV from the [18]F-FDG PET image data. The summation is weighted by the distance of SUV 
difference among neighboring voxels from the center of the tumor and can thus yield increased values for tumors 
with peripheral sub-regions of high SUV that often serves as an indicator of augmented malignancy. Further-
more, the sign of H index is used to differentiate the rate of change for volume averaged SUV from its center to 
periphery. The new model with the H index has been compared with a widely-used model of gray level co-
occurrence matrix (GLCM) for image texture characterization with phantoms of different configurations and the 
[18]F-FDG PET image data of 6 lung cancer patients to evaluate its effectiveness and feasibility for clinical uses. 
The comparison of the H index and GLCM parameters with the phantoms demonstrate that the H index can 
characterize the SUV heterogeneity in all of 6 2D phantoms while only 1 GLCM parameter can do for 1 and fail 
to differentiate for other 2D phantoms. For the 8 3D phantoms, the H index can clearly differentiate all of them 
while the 4 GLCM parameters provide complicated patterns in the characterization. Feasibility study with the 
PET image data from 6 lung cancer patients show that the H index provides an effective single-parameter metric 
to characterize tumor heterogeneity in terms of the local SUV variation, and it has higher correlation with tumor 
volume change after radiotherapy (R2 = 0.83) than the 4 GLCM parameters (R2 = 0.63, 0.73, 0.59 and 0.75 for 
Energy, Contrast, Local Homogeneity and Entropy respectively). The new model of the H index has the capacity 
to characterize the intratumor heterogeneity feature from 3D [18]F-FDG PET image data. As a single parameter 
with an intuitive definition, the H index offers potential for clinical applications. 
 
Keywords: [18]F-FDG PET image, standard uptake value, intratumor heterogeneity, gray level co-occurrence 
matrix 
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INTRODUCTION 

Tumor microenvironment has demon-
strated heterogeneities which include varia-
tions which include variation in degree of 
vascularity, hypoxia, proliferation rates, 
metabolic rates, and gene expression (Eary et 
al., 2008; Kidd and Grigsby, 2008). It has 
been shown that the heterogeneity in intra-
tumor metabolism correlates strongly with 
tumor lymph node metastasis, radiation sen-
sitivity, local recurrence and survival rates. 
The heterogeneity affects also, to a certain 
degree, the patient’s prognosis and response 
to treatment (Kidd and Grigsby, 2008; Tixier 
et al., 2011). Therefore, quantitative study of 
intratumor heterogeneity can yield critical 
insights on cancer diagnosis and treatment 
planning. This leads to increased research 
interests on development of new modeling 
tools for quantification of the heterogeneity 
within the tumor tissues (Tixier et al., 2011). 

As a functional imaging method, positron 
emission tomography (PET) provides physi-
ological information of tumors (Schiepers 
and Dahlbom, 2011; Czernin et al., 2007; 
Belhassen and Zaidi, 2010). The [18]F 
fluorodeoxyglucose PET ([18]F-FDG PET) 
is useful to gauge the metabolic activities of 
tumors because most malignant tumor cells 
have high glucose metabolic rates (Schiepers 
and Dahlbom, 2011). An [18]F-FDG PET 
image can be utilized to obtain the standard 
uptake value (SUV) of the radiotracer either 
voxel-wise or over a region of interest (ROI) 
which serves as a metric of glucose metabo-
lism within the tumor (Tixier et al., 2011). 
For example, it has been reported that intra-
tumor heterogeneity can be characterized 
with quantitative analysis of the [18]F-FDG 
PET image data (Eary et al., 2008; Tixier et 
al., 2011). Most of the published models are 
for the assessment of intratumor heterogenei-
ty from the molecular biology point of view, 
which describes the tumor growth or me-
tabolism dynamics (Eary et al., 2008; O'Sul-
livan et al., 2005; Wu et al., 1995; Li et al., 
2010; Gonzalez-Garcia et al., 2002; Geisler 
et al., 2002). Among these works some stud-
ies adopted an image texture based approach 

in extracting intratumor heterogeneity infor-
mation from the pre-therapy PET images of 
patients (Tixier et al., 2011; El Naqa et al., 
2009). El Naqa and colleagues used the tex-
tural features to predict treatment outcomes 
from baseline [18]F-FDG PET images of 
patients with cervical and head-and-neck 
cancers. In their study, the methods of inten-
sity-volume histogram, geometrical shape 
features and gray level co-occurrence-matrix 
(GLCM) parameters of energy, contrast, lo-
cal homogeneity and entropy were used for 
the characterization of [18]F-FDG uptake 
heterogeneity in tumor or ROI (El Naqa et 
al., 2009). Tixier and colleagues verified the 
effectiveness of the GLCM parameters in 
assessing intratumor heterogeneity and stud-
ied their predictive value for the response of 
esophageal cancer patients to radiochemo-
therapy (Tixier et al., 2011). Tan and col-
leagues used 19 histogram distances to quan-
titatively analyze longitudinal patterns of 
[18]F-FDG uptake in tumor and concluded 
that the patterns characterized using 14 his-
togram distances provide useful information 
for predicting the pathologic response of eso-
phageal cancer to neoadjuvant chemoradio-
therapy (Tan et al., 2013). 

The existing models employ multiple pa-
rameters for feature extraction which makes 
it difficult to implement in clinical settings 
for quantitative characterization of tumor cell 
response to radiotherapy. A simple, self-
sufficient and easy-to-use mathematical 
model can be very helpful to utilize intra-
tumor heterogeneity information extracted 
from [18]F-FDG PET image data for cancer 
diagnosis, staging, treatment planning, prog-
nosis and response assessment in routine 
cancer management. For this purpose we 
have developed a new model for intratumor 
heterogeneity assessment with a single-
parameter index as a quantitative tool for fu-
ture clinical studies. The model has been 
tested and validated with analytical spherical 
phantoms and patients’ [18]F-FDG PET im-
age data to evaluate its effectiveness. Our 
results demonstrated that the new model can 
serve as an objective descriptor of intratumor 
heterogeneity. We present the model in the 
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next section followed with results and dis-
cussion. 
 

MATERIALS AND METHODS 

SUV is defined as a measurement of ac-
tivity per unit volume of tissue normalized 
by the administered radiotracer activity per 
unit of body mass at the time of image ac-
quisition. Hence SUV depends on the initial 
FDG uptake kinetics and radiotracer distri-
bution which in turn are functions of the ini-
tial dose and elapsed time between injection 
and image acquisition. Based on these con-
siderations we have developed the following 
guidelines for development of the new mod-
el. First, the single-parameter index should 
be related to the differential distribution of 
the voxel-wise SUV in the tumor for quanti-
fication of heterogeneity. Secondly, simple 
and easy-to-understand definition is pre-
ferred since it is intended for clinical imple-
mentations. Last the model should reflect 
clinical evidence that peripheral heterogenei-
ty often indicates diffusing tumors of poor 
prognosis (Cao et al., 2009; Owonikoko et 
al., 2002). 

With these guidelines a dimensionless 
parameter of H index is defined to character-
ize the heterogeneity and direction of SUV 
variation within the tumor. By summing the 
local difference of SUV among the voxels 
within the tumor or ROI, and size-weighted 
index of heterogeneity is defined as 
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where M is the number of voxels within 
the segmented tumor, Ni is the number of 
voxels within the tumor adjacent to the ith 
voxel which is 26 or less, |SUV|ij is the ab-
solute value of SUV difference between the 
ith and its jth adjacent voxel, SUVth is a 
threshold value of SUV for segmenting the 
tumor, di is the distance of ith voxel from 
SUV-based tumor center at rc as discussed 
below and dmax is the maximum value of di 

for I = 1, 2, …, M. The SUV-based tumor 
center or simply tumor center is defined by 
rc = (x1c, x2c, x3c) in the following with SUVi 
and xni as the SUV and nth coordinate of the 
ith voxel, respectively 
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In the definition of H given by Eq. (1) 
the weight factor wi is employed to increase 
the contribution of the peripheral heterogene-
ity associated with the voxel i and the sign of 
± is used to indicate a descending (+) or as-
cending (–) variation of averaged SUV from 
the tumor center to the periphery which has 
certain clinical implications (Cao et al., 2009; 
Owonikoko et al., 2002). To determine the 
sign we calculate two times for the tumor, 
the first calculation uses the whole tumor 
volume, the second calculation uses the vol-
ume shrunk from the periphery to the center 
by 1/2 to get averaged SUV for the inner part 
of the tumor. Then the sign of H index is de-
termined by comparing the two averaged 
SUV values, if the first value is less than or 
equal to the second one, a (+) sign is given to 
the H index to indicate the descending 
change from the center to the periphery, oth-
erwise a (–) sign will be given to the H index. 
SUVth can be set by users and was assumed 
to be 2.5 (g/ml) for our study. With the 
above procedure the H index is a dimension-
less parameter and its magnitude correlates 
positively with the extent of heterogeneity in 
the spatial distribution of SUV or [18]F-FDG 
PET image data.   

To investigate the relation of the H index 
with the image textures, we selected the 
GLCM algorithm to quantify the textures. 
GLCM has been used widely as a powerful 
tool for analysis of image textures for its ca-
pacity to identify second-order spatial rela-
tionships between pixels or voxels of the in-
put image data by constructing matrix P 
(Haralick, 1979; Dong et al., 2011). The ma-
trix elements P (g, h; d, a) are determined by 
the co-occurrence probability of two gray 
levels or intensities of g and h at two neigh-
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boring voxels separated by a pre-determined 
vector of distance d and direction a. Thus the 
row and column positions of an element are 
given by the selected gray levels and, there-
fore, GLCM can be presented as a square 
image with a size equal to the number of 
gray levels G. Once the GLCM image is ob-
tained, multiple statistical parameters can be 
derived for quantification of the input image 
textures. In our study the distance vectors of 
(d, a) were set to cover all of the nearest 
neighbors for each selected voxel in three-
dimensional (3D) or 2D space whose maxi-
mum values is 26 or 8 respectively with d=1. 
After the calculation of P for an input [18]F-
FDG PET image, 4 parameters of Energy, 
Contrast, Local Homogeneity and Entropy 
were obtained to quantify the image textures. 
The definitions of these GLCM parameters 
are given below (El Naqa et al., 2009; 
Haralick, 1979; Dong et al., 2011). 
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Among the above parameters, Energy is 
a measure of image uniformity whose larger 
value indicates a more uniform and regular 
changing texture pattern. Contrast is propor-
tional to the variations of gray levels present 
in the input image and favors contributions 
from the elements of P matrix away from the 
diagonal or large variations in gray levels 
while Local Homogeneity provides a similar 
measure but favoring those elements close to 
the diagonal. Finally Entropy measures the 
randomness of intensity distribution and 
reaches its maximum value if all P elements 
are of random values. It should be noted that 
these parameters are independent of the posi-
tion, orientation, size, and gray levels of the 
tumor in the input image and take into ac-

count only the local spatial distribution of 
gray levels. 

To validate the new heterogeneity as-
sessment model, two types of phantoms with 
different distributions of gray levels assumed 
as SUV were created and analyzed using the 
Matlab software (MathWorks, Inc., Natick) 
for calculations of the GLCM parameters 
and H index. The first type of phantoms con-
sists of either single spheres or multi-sphere 
assemblies representing 3D tumors without 
or with heterogeneous sub-regions of high 
SUV inside the tumors to mimic the clinical 
situations. The large sphere has a radius of 
rmax=30 voxels and the variation of SUV or 
the voxel intensity is of a modified Gaussian 
profile with the center peak value fixed at 40 
(=SUVmax) and 2.0 (g/ml) (=SUVth) at the 
surface. The following equation defines SUV 
at r 

2
0

max 2
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| |
( ) (1 )exp{ } 2
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r r
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where r0 is the sphere center and R is an 
adjustable size parameter for the Gaussian 
function. The SUV distributions of small 
spheres also follow similar modified Gaussi-
an profiles with its center peak values fixed 
at 40 and reduced along their radii to values 
at the surfaces which are the same as the 
SUV value of their surrounding voxels. Dif-
ferent cases were considered which include 
single spheres of various R values, multi-
sphere assemblies with different number of 
small spheres representing sub-regions of 
high SUV, and two-sphere assemblies with a 
small sphere of different location (D) and 
radius (rs) inside the large sphere phantom. 
Figure 1 presents the cross-section views of 
these phantoms. A homogeneous image (R=) 
with all voxels having the same SUV of 2.0 
(g/ml) was used for baseline comparison. 
The H index and GLCM feature parameters 
were calculated and compared for all phan-
toms to evaluate the new model. In addition 
to the 3D spherical phantoms, we also em-
ployed second type of 2D phantoms of six 
SUV distributions to demonstrate the differ-
ence between the H index and GLCM pa-
rameters on characterization of SUV distri-
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butions. The 2D phantoms are displayed in 
Figure 2. 

We also applied the H index on [18]F-
FDG PET image data from 6 non-small cell 
lung cancer (NSCLC) patients to test the fea-
sibility of the new model for future research 
and application in clinics. The images were 
acquired from the patients before their radio-
therapy or radiochemotherapy with a PET 
scanner (Discovery ST, General Electric, 
Inc., New York). The PET image processing 
software MIM 5.2 (MIM Software, Inc., 
Cleveland) was used to determine the voxel-
wise distribution of SUV in the PET images 
and the tumor regions were segmented with 
the definition of SUVth = 2.5 (g/ml). Subse-
quently the H value and GLCM texture pa-

rameters were calculated within the tumors. 
Three patients’ PET images and the seg-
mented tumor regions are shown in Figure 3 
(a) and (b) as examples. To investigate corre-
lation of the H index and GLCM parameters 
with tumor response to radiation treatment, 
post-treatment change of tumor volume, 
which is the important indicator of the re-
sponse, was measured with the planning CT 
image and follow-up CT image at the time of 
4 months after treatment for each patient. 
The percentage differences between post and 
pre-treatment volumes defined as the ratio of 
volume change to pre-treatment volume were 
recorded. Correlation determination R2 was 
used in the analysis. 

 
 

 
 

 

Figure 1: Cross-sectional views of selected 3D spherical phantoms, (a) and (b): single modified 
Gaussian spheres of size parameter R=4 and 12; (c) and (d): multi-sphere assemblies with variable 
number of smaller spheres N=1 and 4, the radius of the smaller sphere rs=6 and the distance between 
the centers of large and smaller spheres D=15; (e) and (f): two-sphere assemblies with variable center 
distance D=10 and 19 and rs=6; (g) and (h): two-sphere assemblies with variable radius rs=8 and 12 
and D=15. For all images SUVmax is set to 40 for all cases and for images (c) to (h) the size parameter 
R of the large sphere is set to 30 in the unit of voxels. 
 
 
 

 
Figure 2: 2D phantoms with different SUV distributions 
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Figure 3: The [18]F-FDG PET images of three lung cancer patients with one tumor per patient, (a) 
different cross-sectional views; (b) the tumors segmented from the images in (a). 
 
 

RESULTS AND DISCUSSION 

Model validation was first performed 
with the 3D phantoms and 2D phantoms fol-
lowed by a feasibility study on the patients’ 
image data. The H index and GLCM pa-
rameters were obtained from spherical phan-
toms of different degrees of heterogeneity to 
investigate the relation between the H index 
and the textures of the 3D images. The 
GLCM parameters were calculated and com-

pared to the H index for each phantom 
shown in Figure 1 with results presented in 
Figure 4. The results of parameter compari-
son using the six 2D graphics are displayed 
in Figure 5. The data clearly show that for 
these 2D cases the H index can provide a 
measure of the heterogeneity within the 
phantoms than the selected GLCM parame-
ters. In Figure 2, it can be seen that image (a) 
and (b) have the same averaged SUV value 
of 5 but obviously very different distribu-
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tions with image (b) more heterogeneous 
than (a). Figure 5 demonstrates that the H 
index for (b) is about 2.7 times higher than 
that for (a) while only the Contrast among 
the 4 GLCM parameters exhibits variation 
with the value for (a) 1.5 times higher than 
the value for (b). For image (c) through (f), 
one can find they are of different SUV dis-
tributions and the H index can clearly differ-
entiate these images but the 4 GLCM param-
eters remain the same for them respectively 
and fail to differentiate them. 

The availability of an effective single-
parameter index to characterize tumor heter-
ogeneity can benefit substantially the clinical 
treatment and management of cancer patients. 
To achieve this goal we have selected image 
data of [18]F-FDG PET as the primary 
source of information for modeling of the 

heterogeneous metabolic activities within 
tumors. A single dimensionless parameter of 
H index has been defined and obtained from 
the 2D and 3D distribution of SUV as a pa-
rameter for characterization of tumor hetero-
geneity. Through the validation study with 
the 3D spherical phantoms we found that the 
H index increases in each case of 4 single-
sphere phantoms with increasing R (see Fig-
ure 4(a)) as expected, except the baseline 
case of R= 0 of homogeneous SUV distribu-
tion. However, the rate of the H index in-
crease becomes much less in the other 3 
types of spherical phantoms as shown from 
Figure 1(c) to 1(h) with variable number or 
distance or radius of the small sphere(s) em-
ployed as a representation of heterogeneous 
sub-regions within the large sphere. 

 
 

Figure 4: GLCM parameters and H index obtained from the 3D spherical phantoms. (a): single 
spheres of different size parameter R, zero represents an invisible bar; (b): multi-sphere assembly with 
small spheres of variable number N; (c): two-sphere assembly with small sphere of variable distance D; 
(d): two-sphere assembly with small sphere of variable radius rs 
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Figure 5: The GLCM parameters and H index obtained from the 2D phantoms shown in Figure 2, the 
H bar in (f) is marked with its negative value of -0.017 
 
 
 

This can be understood due to the use of 
modified Gaussian profiles for the SUV of 
all spheres which is characterized by their 
very smooth spatial changes. Nevertheless it 
can be observed from the results in Figure 4 
that the degree of heterogeneity gains the 
largest change when the number N of the 
small spheres at the periphery of large sphere 
increases from 1 to 4. It is also interesting to 
note that only the Contrast exhibits consist-
ently large variations while the others show 
either no or very little changes among the 
GLCM parameters. Recall that the Contrast 
as defined in Eq. (5) is dominated by the 
probability of large gray level differences 
among the neighboring voxels in an input 
image. As a result the Contrast parameter 
provides a gauge similar to the H index and 
the two correlates quite strongly. While the 
increases of both H index and Contrast are 
largest for the case of rising N among the 
multi-sphere phantoms, however, the sources 
of the increase are different: the former is 
due to number of peripheral spheres and the 
latter is more related to the 2nd power of the 
local gray level differences. Consequently 

the above results demonstrate that the H in-
dex defined by the new model can not only 
reduce the complexity of calculation in-
volved in conventional image characteriza-
tion methods such as GLCM but also pro-
vide an improved measure of global charac-
teristics of tumor heterogeneity. The above 
conclusion is further corroborated by the re-
sults of analysis performed with the 2D 
phantoms as presented in Figure 2 and Fig-
ure 5. It is shown that the H index can char-
acterize the image heterogeneity with higher 
sensitivity than the 4 GLCM parameters. 

A further comparison of the H index and 
GLCM parameters with the [18]F-FDG PET 
image data of the 6 patients in Figure 6 con-
firms the conclusions presented above. Un-
like the highly symmetric assemblies of the 
modified Gaussian spheres, the patients’ im-
ages present high degree of heterogeneity 
and thus all of the GLCM parameters’ values 
vary among the tumors. Still the H index, 
Contrast and Entropy parameters decrease 
from Tumor 1 to Tumor 6, indicating the 
tumor heterogeneity varies from Tumor 1 to 
6 in a descending order. On the other hand, 
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the Energy parameter increases from Tumor 
1 to 6 and so does the Local Homogeneity. 
The opposite variations between Contrast 
and Local Homogeneity among the 6 tumors 
demonstrate that the co-occurrence probabil-
ity of same or similar SUV among the 
neighboring voxels as characterized by the 
Local Homogeneity varies in an opposite 
fashion than that of significantly different 
SUV as characterized by the Contrast. These 
results show that the multiple GLCM param-
eters, only 4 are used here, can provide a 
comprehensive interpretation of the PET im-
age data in terms of the statistical features of 
the image textures. The GLCM model, how-
ever, can be difficult to implement in clinics 
because of the abstract definitions and dif-
ferent sensitivities to tumor heterogeneity 
among the multiple parameters. In compari-
son, the H index yields an intuitive and fairly 
robust tool for extracting information on the 
spatial gradient of the tumor heterogeneity as 
demonstrated by our results. Moreover, the 
sign of H index provides additional infor-
mation on relative changes in SUV between 
the SUV-based tumor center and periphery. 

Many studies have shown that heteroge-
neity in intratumor metabolism plays an im-
portant role in tumor response to treatment 
(Kidd and Grigsby, 2008; Tixier et al., 2011). 

Our preliminary study with patient data has 
also shown this high correlation, which indi-
cates the potentials of utilizing the H index 
in studying tumor response to radiation 
treatment.  

 
CONCLUSION 

We have developed a new model with a 
single-parameter H index for assessment of 
tumor heterogeneity from the image data of 
[18]F-FDG PET. With the phantoms and pa-
tients’ image data we have shown that the H 
index allows characterization of differential 
SUV distribution in a tumor. A comparison 
of the H index and 4 GLCM parameters 
demonstrates that the new model has the ca-
pacity to extract the information on intra-
tumor heterogeneity from the 2D and 3D im-
age data and possesses the simplicity needed 
for potential clinical applications. The corre-
lation of the H index with the pathological 
grading of the tumor, response to therapy 
and patient’s prognosis, however, remains to 
be further investigated with large amounts of 
patient data. We are currently conducting a 
clinical study to answer these critical ques-
tions. 

 

 

 
Figure 6: The GLCM parameters and H index obtained from six lung cancer patients’ tumors, three of 
them are shown in Figure 3 
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